Interpolation with estimates in $\mathbb C^n$ and its applications
Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1297-1340 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of interpolation in spaces of entire functions of several complex variables of finite order and type is studied. The extension is performed from the zero set of an entire function $f$ of finite order and type. Sufficient conditions for interpolation are obtained in terms of lower bounds for the first derivatives of $f$ that are non-zero at the points in its zero set. The result is applied to the problem of the validity of the fundamental principle in spaces of solutions of homogeneous convolution equations.
@article{SM_2001_192_9_a2,
     author = {A. S. Krivosheev},
     title = {Interpolation with estimates in~$\mathbb C^n$ and its applications},
     journal = {Sbornik. Mathematics},
     pages = {1297--1340},
     year = {2001},
     volume = {192},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_9_a2/}
}
TY  - JOUR
AU  - A. S. Krivosheev
TI  - Interpolation with estimates in $\mathbb C^n$ and its applications
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1297
EP  - 1340
VL  - 192
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_9_a2/
LA  - en
ID  - SM_2001_192_9_a2
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%T Interpolation with estimates in $\mathbb C^n$ and its applications
%J Sbornik. Mathematics
%D 2001
%P 1297-1340
%V 192
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2001_192_9_a2/
%G en
%F SM_2001_192_9_a2
A. S. Krivosheev. Interpolation with estimates in $\mathbb C^n$ and its applications. Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1297-1340. http://geodesic.mathdoc.fr/item/SM_2001_192_9_a2/

[1] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[2] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | MR | Zbl

[3] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR

[4] Leontev A. F., “Ob interpolirovanii v klasse tselykh funktsii konechnogo poryadka”, Dokl. AN SSSR, 61:5 (1948), 785–787 | MR | Zbl

[5] Leontev A. F., “Ob interpolirovanii v klasse tselykh funktsii konechnogo poryadka normalnogo tipa”, Dokl. AN SSSR, 66:2 (1949), 153–156 | MR | Zbl

[6] Leontev A. F., “Ob interpolyatsionnoi zadache”, Dokl. AN SSSR, 66:3 (1949), 331–334 | MR | Zbl

[7] Leontev A. F., “K voprosu ob interpolirovanii v klasse tselykh funktsii konechnogo poryadka”, Matem. sb., 41:1 (1957), 81–96 | MR | Zbl

[8] Firsakova O. S., “Nekotorye voprosy interpolirovaniya s pomoschyu tselykh funktsii”, Dokl. AN SSSR, 120:3 (1958), 477–480 | MR | Zbl

[9] Lapin G. P., “Interpolirovanie v klasse tselykh funktsii konechnogo poryadka”, Izv. vuzov, 1959, no. 5, 146–153 | MR | Zbl

[10] Lapin G. P., “O tselykh funktsiyakh konechnogo poryadka, prinimayuschikh vmeste s proizvodnymi zadannye znacheniya v zadannykh tochkakh”, Sib. matem. zhurn., 6:6 (1965), 1267–1281 | MR | Zbl

[11] Grishin A. F., Russakovskii A. M., “Svobodnaya interpolyatsiya tselymi funktsiyami”, Teoriya funktsii, funkts. analiz i ikh prilozh., no. 44, Kharkov, 1985, 32–42 | MR | Zbl

[12] Russakovskii A. M., “Ob interpolirovanii v klasse tselykh funktsii, imeyuschikh indikator ne vyshe dannogo”, Teoriya funktsii, funkts. analiz i ikh prilozh., no. 41, Kharkov, 1984, 119–122 | MR | Zbl

[13] Berenstein C. A., Taylor B. A., “A new look at interpolation theory for entire functions of one variable”, Adv. Math., 33:2 (1979), 109–143 | DOI | MR | Zbl

[14] Bratischev A. V., “Odin tip otsenok snizu tselykh funktsii konechnogo poryadka i nekotorye prilozheniya”, Izv. AN SSSR. Ser. matem., 48:3 (1984), 451–475 | MR | Zbl

[15] Bratischev A. V., “Ob interpolyatsionnoi zadache v nekotorykh klassakh tselykh funktsii”, Sib. matem. zhurn., 17:1 (1976), 30–44 | MR

[16] Bratischev A. V., Korobeinik Yu. F., “Kratnaya interpolyatsionnaya zadacha v prostranstve tselykh funktsii zadannogo utochnennogo poryadka”, Izv. AN SSSR. Ser. matem., 40:5 (1976), 1102–1127 | MR | Zbl

[17] Khërmander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[18] Berenstein K., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napr., 54, VINITI, M., 1989, 5–112 | MR

[19] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967 | MR

[20] Ehrenpreis L., Fourier analysis in several complex variables, Wiley Interscience, New York, 1970 | MR | Zbl

[21] Berenstein C. A., Taylor B. A., “Interpolation problems in $\mathbb C^n$ with applications to harmonic analysis”, J. Anal. Math., 38 (1980), 188–254 | MR | Zbl

[22] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[23] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[24] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. I. Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[25] Shabat B. V., Vvedenie v kompleksnyi analiz, Chast II, Nauka, M., 1985 | MR

[26] Krivosheev A. S., Napalkov V. V., “Kompleksnyi analiz i operatory svertki”, UMN, 47:6(288) (1992), 3–58 | MR | Zbl

[27] Grotendik A. O., “O prostranstvakh $(F)$ i $(DF)$”, Matematika, 2:3 (1958), 81–127

[28] Yulmukhametov R. S., “Odnorodnye uravneniya svertki”, Dokl. AN SSSR, 316:2 (1991), 312–315 | MR | Zbl