Interpolation with estimates in~$\mathbb C^n$ and its applications
Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1297-1340

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of interpolation in spaces of entire functions of several complex variables of finite order and type is studied. The extension is performed from the zero set of an entire function $f$ of finite order and type. Sufficient conditions for interpolation are obtained in terms of lower bounds for the first derivatives of $f$ that are non-zero at the points in its zero set. The result is applied to the problem of the validity of the fundamental principle in spaces of solutions of homogeneous convolution equations.
@article{SM_2001_192_9_a2,
     author = {A. S. Krivosheev},
     title = {Interpolation with estimates in~$\mathbb C^n$ and its applications},
     journal = {Sbornik. Mathematics},
     pages = {1297--1340},
     publisher = {mathdoc},
     volume = {192},
     number = {9},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_9_a2/}
}
TY  - JOUR
AU  - A. S. Krivosheev
TI  - Interpolation with estimates in~$\mathbb C^n$ and its applications
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1297
EP  - 1340
VL  - 192
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_9_a2/
LA  - en
ID  - SM_2001_192_9_a2
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%T Interpolation with estimates in~$\mathbb C^n$ and its applications
%J Sbornik. Mathematics
%D 2001
%P 1297-1340
%V 192
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_9_a2/
%G en
%F SM_2001_192_9_a2
A. S. Krivosheev. Interpolation with estimates in~$\mathbb C^n$ and its applications. Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1297-1340. http://geodesic.mathdoc.fr/item/SM_2001_192_9_a2/