Theorems on ball mean values in symmetric spaces
Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1275-1296

Voir la notice de l'article provenant de la source Math-Net.Ru

Various classes of functions on a non-compact Riemannian symmetric space $X$ of rank 1 with vanishing integrals over all balls of fixed radius are studied. The central result of the paper includes precise conditions on the growth of a linear combination of functions from such classes; in particular, failing these conditions means that each of these functions is equal to zero. This is a considerable refinement over the well-known two-radii theorem of Berenstein–Zalcman. As one application, a description of the Pompeiu subsets of $X$ is given in terms of approximation of their indicator functions in $L(X)$.
@article{SM_2001_192_9_a1,
     author = {V. V. Volchkov},
     title = {Theorems on ball mean values in symmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {1275--1296},
     publisher = {mathdoc},
     volume = {192},
     number = {9},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_9_a1/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - Theorems on ball mean values in symmetric spaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1275
EP  - 1296
VL  - 192
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_9_a1/
LA  - en
ID  - SM_2001_192_9_a1
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T Theorems on ball mean values in symmetric spaces
%J Sbornik. Mathematics
%D 2001
%P 1275-1296
%V 192
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_9_a1/
%G en
%F SM_2001_192_9_a1
V. V. Volchkov. Theorems on ball mean values in symmetric spaces. Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1275-1296. http://geodesic.mathdoc.fr/item/SM_2001_192_9_a1/