Theorems on ball mean values in symmetric spaces
Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1275-1296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Various classes of functions on a non-compact Riemannian symmetric space $X$ of rank 1 with vanishing integrals over all balls of fixed radius are studied. The central result of the paper includes precise conditions on the growth of a linear combination of functions from such classes; in particular, failing these conditions means that each of these functions is equal to zero. This is a considerable refinement over the well-known two-radii theorem of Berenstein–Zalcman. As one application, a description of the Pompeiu subsets of $X$ is given in terms of approximation of their indicator functions in $L(X)$.
@article{SM_2001_192_9_a1,
     author = {V. V. Volchkov},
     title = {Theorems on ball mean values in symmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {1275--1296},
     year = {2001},
     volume = {192},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_9_a1/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - Theorems on ball mean values in symmetric spaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1275
EP  - 1296
VL  - 192
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_9_a1/
LA  - en
ID  - SM_2001_192_9_a1
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T Theorems on ball mean values in symmetric spaces
%J Sbornik. Mathematics
%D 2001
%P 1275-1296
%V 192
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2001_192_9_a1/
%G en
%F SM_2001_192_9_a1
V. V. Volchkov. Theorems on ball mean values in symmetric spaces. Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1275-1296. http://geodesic.mathdoc.fr/item/SM_2001_192_9_a1/

[1] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations, eds. B. Fuglede et al., Kluwer Acad. Publ., Dordrecht, 1992, 177–186 | MR

[2] Berenstein K. A., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napr., 54, VINITI, M., 1989, 5–111 | MR

[3] Zalcman L., “Analyticity and the Pompeiu problem”, Arch. Rational Mech. Anal., 47 (1972), 237–254 | DOI | MR | Zbl

[4] Zalcman L., “Mean values and differential equations”, Israel J. Math., 14 (1973), 339–352 | DOI | MR | Zbl

[5] Berenstein C. A., Zalcman L., “Pompeiu's problem on spaces of constant curvature”, J. Anal. Math., 30 (1976), 113–130 | DOI | MR | Zbl

[6] Berenstein C. A., Zalcman L., “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55:4 (1980), 593–621 | DOI | MR | Zbl

[7] Zalcman L., “Offbeat integral geometry”, Amer. Math. Monthly, 87:3 (1980), 161–175 | DOI | MR | Zbl

[8] Berenstein C. A., Gay R., “A local version of the two-circles theorem”, Israel J. Math., 55 (1986), 267–288 | DOI | MR | Zbl

[9] Smith J. D., “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72 (1972), 403–416 | DOI | MR | Zbl

[10] Berenstein C. A., Gay R., Yger A., “Invertion of the local Pompeiu transform”, J. Anal. Math., 54 (1990), 259–287 | DOI | MR | Zbl

[11] Agranovskii M. L., “Preobrazovanie Fure na $\operatorname{SL}_2(\mathbb R)$ i teoremy tipa Morera”, Dokl. AN SSSR, 243:6 (1978), 1353–1356 | MR | Zbl

[12] Sitaram A., “Fourier analysis and determining sets for Radon measures on $\mathbb R^n$”, Illinois J. Math., 28 (1984), 339–347 | MR | Zbl

[13] Thangavelu S., “Spherical means and CR functions on the Heisenberg group”, J. Anal. Math., 63 (1994), 255–286 | DOI | MR | Zbl

[14] Agranovsky M., Berenstein C. A., Chang D. C., Pascuas D., “Thèorèmes de Morera et Pompeiu pour le groupe de Heisenberg”, C. R. Acad. Sci. Paris. Sér. I Math., 315 (1992), 655–658 | MR | Zbl

[15] Agranovsky M., Berenstein C. A., Chang D. C., “Morera theorem for holomorphic $H^p$ spaces in the Heisenberg group”, J. Reine Angew. Math., 443 (1993), 49–89 | MR | Zbl

[16] Cohen J. M., Picardello M. A., “The 2-circle and 2-disk problems on trees”, Israel J. Math., 64 (1988), 73–86 | DOI | MR | Zbl

[17] Volchkov V. V., “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh”, Matem. sb., 186:6 (1995), 15–34 | MR | Zbl

[18] Volchkov V. V., “Ob odnoi probleme Zaltsmana i ee obobscheniyakh”, Matem. zametki, 53:2 (1993), 30–36 | MR | Zbl

[19] Volchkov V. V., “Reshenie problemy nositelya dlya nekotorykh klassov funktsii”, Matem. sb., 188:9 (1997), 13–30 | MR | Zbl

[20] Volchkov V. V., “O mnozhestvakh in'ektivnosti preobrazovaniya Pompeiyu”, Matem. sb., 190:11 (1999), 51–66 | MR | Zbl

[21] Volchkov V. V., “Novye teoremy o dvukh radiusakh v teorii garmonicheskikh funktsii”, Izv. RAN. Ser. matem., 58:1 (1994), 182–194 | Zbl

[22] Volchkov V. V., “Novye teoremy o srednem dlya reshenii uravneniya Gelmgoltsa”, Matem. sb., 184:7 (1993), 71–78 | MR | Zbl

[23] Volchkov V. V., “O mnozhestvakh in'ektivnosti preobrazovaniya Radona na sferakh”, Izv. RAN. Ser. matem., 63:3 (1999), 63–76 | MR

[24] Volchkov V. V., “Teoremy edinstvennosti dlya nekotorykh klassov funktsii s nulevymi sfericheskimi srednimi”, Matem. zametki, 62:1 (1997), 59–65 | MR | Zbl

[25] Volchkov V. V., “Okonchatelnyi variant teoremy o srednem v teorii garmonicheskikh funktsii”, Matem. zametki, 59:3 (1996), 351–358 | MR | Zbl

[26] Volchkov V. V., “Teoremy o dvukh radiusakh na prostranstvakh postoyannoi krivizny”, Dokl. RAN, 347:3 (1996), 300–302 | MR | Zbl

[27] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[28] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR

[29] Volchkov V. V., “Ekstremalnye zadachi o mnozhestvakh Pompeiyu”, Matem. sb., 189:7 (1998), 3–22 | MR | Zbl

[30] Volchkov V. V., “Ekstremalnye varianty problemy Pompeiyu”, Matem. zametki, 59:5 (1996), 671–680 | MR | Zbl

[31] Shahshahani M., Sitaram A., “The Pompeiu problem in exterior domains in symmetric spaces”, Contemp. Math., 63 (1987), 267–277 | MR | Zbl

[32] Berenstein C. A., Shahshahani M., “Harmonic analysis and the Pompeiu problem”, Amer. J. Math., 105 (1983), 1217–1229 | DOI | MR | Zbl

[33] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. I, Nauka, M., 1973

[34] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956