Log canonical thresholds on hypersurfaces
Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1241-1257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A lower bound for global log canonical thresholds on smooth hypersurfaces is found. This bound cannot be improved for the fixed degree and dimension of the hypersurface.
@article{SM_2001_192_8_a7,
     author = {I. A. Cheltsov},
     title = {Log canonical thresholds on hypersurfaces},
     journal = {Sbornik. Mathematics},
     pages = {1241--1257},
     year = {2001},
     volume = {192},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_8_a7/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Log canonical thresholds on hypersurfaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1241
EP  - 1257
VL  - 192
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_8_a7/
LA  - en
ID  - SM_2001_192_8_a7
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Log canonical thresholds on hypersurfaces
%J Sbornik. Mathematics
%D 2001
%P 1241-1257
%V 192
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2001_192_8_a7/
%G en
%F SM_2001_192_8_a7
I. A. Cheltsov. Log canonical thresholds on hypersurfaces. Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1241-1257. http://geodesic.mathdoc.fr/item/SM_2001_192_8_a7/

[1] Cheltsov I. A., Park J., Log canonical thresholds and generalized Eckardt points, Preprint, 2000; E-print math.AG/0003121

[2] Pukhlikov A. V., “Zamechanie o teoreme V. A. Iskovskikh i Yu. I. Manina o trekhmernoi kvartike”, Tr. MIAN, 208, Nauka, M., 1995, 278–289 | MR | Zbl

[3] Artin M., “On isolated rational singularities of surfaces”, Amer. J. Math., 88 (1966), 129–136 | DOI | MR | Zbl

[4] Cheltsov I. A., “Trekhmernye mnogoobraziya, obladayuschie divizorom s chislenno trivialnym kanonicheskim klassom”, UMN, 51:1 (1996), 177–178 | MR | Zbl

[5] Mori S., “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl

[6] Shokurov V. V., “Trekhmernye log-perestroiki”, Izv. AN SSSR. Ser. matem., 56:1 (1992), 105–203 | MR | Zbl

[7] Cheltsov I. A., “Log models of birationally rigid varieties”, J. Math. Sci., 102 (2000), 3843–3875 | DOI | MR | Zbl

[8] Corti A., “Factorizing birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4 (1995), 223–254 | MR | Zbl

[9] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86 (128):1 (1971), 140–166 | MR | Zbl

[10] Pukhlikov A. V., “Birational automorphisms of four-dimensional quintic”, Invent. Math., 87 (1987), 303–329 | DOI | MR | Zbl

[11] Cheltsov I. A., “O gladkoi chetyrekhmernoi kvintike”, Matem. sb., 191:9 (2000), 139–160 | MR | Zbl

[12] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134 (1998), 401–426 | DOI | MR | Zbl