On linear independence of values of generalized polylogarithms
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1225-1239
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The linear independence of the values at certain rational points of generalized polylogarithms, which generate the algebra of all analytic functions with three logarithmic branch points, is established. Hermite–Padé approximations for an Angelesco–Nikishin system defined by a complete binary tree are used.
			
            
            
            
          
        
      @article{SM_2001_192_8_a6,
     author = {V. N. Sorokin},
     title = {On linear independence of values of generalized polylogarithms},
     journal = {Sbornik. Mathematics},
     pages = {1225--1239},
     publisher = {mathdoc},
     volume = {192},
     number = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_8_a6/}
}
                      
                      
                    V. N. Sorokin. On linear independence of values of generalized polylogarithms. Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1225-1239. http://geodesic.mathdoc.fr/item/SM_2001_192_8_a6/
