On linear independence of values of generalized polylogarithms
Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1225-1239

Voir la notice de l'article provenant de la source Math-Net.Ru

The linear independence of the values at certain rational points of generalized polylogarithms, which generate the algebra of all analytic functions with three logarithmic branch points, is established. Hermite–Padé approximations for an Angelesco–Nikishin system defined by a complete binary tree are used.
@article{SM_2001_192_8_a6,
     author = {V. N. Sorokin},
     title = {On linear independence of values of generalized polylogarithms},
     journal = {Sbornik. Mathematics},
     pages = {1225--1239},
     publisher = {mathdoc},
     volume = {192},
     number = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_8_a6/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - On linear independence of values of generalized polylogarithms
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1225
EP  - 1239
VL  - 192
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_8_a6/
LA  - en
ID  - SM_2001_192_8_a6
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T On linear independence of values of generalized polylogarithms
%J Sbornik. Mathematics
%D 2001
%P 1225-1239
%V 192
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_8_a6/
%G en
%F SM_2001_192_8_a6
V. N. Sorokin. On linear independence of values of generalized polylogarithms. Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1225-1239. http://geodesic.mathdoc.fr/item/SM_2001_192_8_a6/