On deformation of certain functional classes in the~spaces $C(T^m)$ and~$L(T^m)$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1209-1224
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of violation of the invariance of the functional classes $H(\omega_1,\dots,\omega_m;C(T^m))$ and $H(\omega_1,\dots,\omega_m;L(T^m))$ $(m\geqslant 2)$ under a multidimensional conjugation operator $\widetilde f_B$ is studied in the case when the moduli of continuity $\omega_i$ $(i=1,\dots,m)$ satisfy Zygmund's condition. Direct estimates are obtained and sharpness of these estimates is established.
			
            
            
            
          
        
      @article{SM_2001_192_8_a5,
     author = {M. M. Lekishvili and A. N. Danelia},
     title = {On deformation of certain functional classes in the~spaces $C(T^m)$ and~$L(T^m)$},
     journal = {Sbornik. Mathematics},
     pages = {1209--1224},
     publisher = {mathdoc},
     volume = {192},
     number = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_8_a5/}
}
                      
                      
                    TY - JOUR AU - M. M. Lekishvili AU - A. N. Danelia TI - On deformation of certain functional classes in the~spaces $C(T^m)$ and~$L(T^m)$ JO - Sbornik. Mathematics PY - 2001 SP - 1209 EP - 1224 VL - 192 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_8_a5/ LA - en ID - SM_2001_192_8_a5 ER -
M. M. Lekishvili; A. N. Danelia. On deformation of certain functional classes in the~spaces $C(T^m)$ and~$L(T^m)$. Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1209-1224. http://geodesic.mathdoc.fr/item/SM_2001_192_8_a5/
