@article{SM_2001_192_8_a5,
author = {M. M. Lekishvili and A. N. Danelia},
title = {On deformation of certain functional classes in the~spaces $C(T^m)$ and~$L(T^m)$},
journal = {Sbornik. Mathematics},
pages = {1209--1224},
year = {2001},
volume = {192},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_8_a5/}
}
M. M. Lekishvili; A. N. Danelia. On deformation of certain functional classes in the spaces $C(T^m)$ and $L(T^m)$. Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1209-1224. http://geodesic.mathdoc.fr/item/SM_2001_192_8_a5/
[1] Zhizhiashvili L. V., Nekotorye voprosy teorii trigonometricheskikh ryadov Fure i ikh sopryazhennykh, Izd-vo Tbilisskogo un-ta, Tbilisi, 1993
[2] Bernshtein S. N., Sobranie sochinenii. V. II. Konstruktivnaya teoriya funktsii (1931–1953), Izd-vo AN SSSR, M., 1960
[3] Nikolskii S. M., “Ryad Fure funktsii s dannym modulem nepreryvnosti”, Dokl. AN SSSR, 52:3 (1946), 191–194 | MR
[4] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[5] Hardy G. H., Littlewood J. E., “A convergence criterion for Fourier series”, Math. Z., 28 (1928), 612–634 | DOI | MR | Zbl
[6] Cesari L., “Sulle cerie di Fourier delle fonzioni Lipschitziane dipiu variabili”, Ann. Sci. École Norm. Sup. (4), 7:2 (1938), 279–295 | MR | Zbl
[7] Zhak I. E., “Po povodu odnoi teoremy L. Chezari o sopryazhennykh funktsiyakh dvukh peremennykh”, Dokl. AN SSSR, 87:6 (1952), 877–880 | MR
[8] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, URSS, M., 1956, 484–522 | MR
[9] Bari N. K., “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izv. AN SSSR. Ser. matem., 19:5 (1955), 285–302 | MR | Zbl
[10] Lekishvili M. M., “O sopryazhennykh funktsiyakh mnogikh peremennykh v klasse $\operatorname{Lip}\alpha$”, Matem. zametki, 23:3 (1978), 361–372 | MR | Zbl
[11] Okulov V. A., “Mnogomernyi analog odnoi teoremy Privalova”, Matem. sb., 186:2 (1995), 93–104 | MR | Zbl
[12] Okulov V. A., “Mnogomernyi analog odnoi teoremy Zigmunda”, Matem. zametki, 61:5 (1997), 717–727 | MR | Zbl
[13] Okulov V. A., “Nekotorye strukturnye svoistva sopryazhennykh funktsii v prostranstve $L(T^N)$”, Matem. sb., 189:5 (1998), 87–114 | MR | Zbl
[14] Lekishvili M. M., “O sopryazhennykh funktsiyakh mnogikh peremennykh”, Soobsch. AN GSSR, 94:1 (1979), 21–23 | MR | Zbl
[15] Danelia A., “Conjugated functions of multiple variables and deformation of $H(\omega;L(T^m))$ classes”, Bull. Georgian Acad. Sci., 156:2 (1997), 199–201 | MR | Zbl
[16] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960
[17] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR
[18] Oskolkov K. I., “Neusilyaemost otsenki Lebega dlya priblizheniya funktsii s zadannym modulem nepreryvnosti summami Fure”, Tr. MIAN, 62, Nauka, M., 1971, 337–345 | MR
[19] Zhizhiashvili L. V., “Integriruemost i nepreryvnost sopryazhennykh funktsii mnogikh peremennykh”, Soobsch. AN GSSR, 97:1 (1980), 17–20 | MR | Zbl
[20] Storozhenko E. A., “O nekotorykh teoremakh vlozheniya”, Matem. zametki, 19:2 (1976), 187–200 | MR | Zbl