On deformation of certain functional classes in the spaces $C(T^m)$ and $L(T^m)$
Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1209-1224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of violation of the invariance of the functional classes $H(\omega_1,\dots,\omega_m;C(T^m))$ and $H(\omega_1,\dots,\omega_m;L(T^m))$ $(m\geqslant 2)$ under a multidimensional conjugation operator $\widetilde f_B$ is studied in the case when the moduli of continuity $\omega_i$ $(i=1,\dots,m)$ satisfy Zygmund's condition. Direct estimates are obtained and sharpness of these estimates is established.
@article{SM_2001_192_8_a5,
     author = {M. M. Lekishvili and A. N. Danelia},
     title = {On deformation of certain functional classes in the~spaces $C(T^m)$ and~$L(T^m)$},
     journal = {Sbornik. Mathematics},
     pages = {1209--1224},
     year = {2001},
     volume = {192},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_8_a5/}
}
TY  - JOUR
AU  - M. M. Lekishvili
AU  - A. N. Danelia
TI  - On deformation of certain functional classes in the spaces $C(T^m)$ and $L(T^m)$
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1209
EP  - 1224
VL  - 192
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_8_a5/
LA  - en
ID  - SM_2001_192_8_a5
ER  - 
%0 Journal Article
%A M. M. Lekishvili
%A A. N. Danelia
%T On deformation of certain functional classes in the spaces $C(T^m)$ and $L(T^m)$
%J Sbornik. Mathematics
%D 2001
%P 1209-1224
%V 192
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2001_192_8_a5/
%G en
%F SM_2001_192_8_a5
M. M. Lekishvili; A. N. Danelia. On deformation of certain functional classes in the spaces $C(T^m)$ and $L(T^m)$. Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1209-1224. http://geodesic.mathdoc.fr/item/SM_2001_192_8_a5/

[1] Zhizhiashvili L. V., Nekotorye voprosy teorii trigonometricheskikh ryadov Fure i ikh sopryazhennykh, Izd-vo Tbilisskogo un-ta, Tbilisi, 1993

[2] Bernshtein S. N., Sobranie sochinenii. V. II. Konstruktivnaya teoriya funktsii (1931–1953), Izd-vo AN SSSR, M., 1960

[3] Nikolskii S. M., “Ryad Fure funktsii s dannym modulem nepreryvnosti”, Dokl. AN SSSR, 52:3 (1946), 191–194 | MR

[4] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[5] Hardy G. H., Littlewood J. E., “A convergence criterion for Fourier series”, Math. Z., 28 (1928), 612–634 | DOI | MR | Zbl

[6] Cesari L., “Sulle cerie di Fourier delle fonzioni Lipschitziane dipiu variabili”, Ann. Sci. École Norm. Sup. (4), 7:2 (1938), 279–295 | MR | Zbl

[7] Zhak I. E., “Po povodu odnoi teoremy L. Chezari o sopryazhennykh funktsiyakh dvukh peremennykh”, Dokl. AN SSSR, 87:6 (1952), 877–880 | MR

[8] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, URSS, M., 1956, 484–522 | MR

[9] Bari N. K., “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izv. AN SSSR. Ser. matem., 19:5 (1955), 285–302 | MR | Zbl

[10] Lekishvili M. M., “O sopryazhennykh funktsiyakh mnogikh peremennykh v klasse $\operatorname{Lip}\alpha$”, Matem. zametki, 23:3 (1978), 361–372 | MR | Zbl

[11] Okulov V. A., “Mnogomernyi analog odnoi teoremy Privalova”, Matem. sb., 186:2 (1995), 93–104 | MR | Zbl

[12] Okulov V. A., “Mnogomernyi analog odnoi teoremy Zigmunda”, Matem. zametki, 61:5 (1997), 717–727 | MR | Zbl

[13] Okulov V. A., “Nekotorye strukturnye svoistva sopryazhennykh funktsii v prostranstve $L(T^N)$”, Matem. sb., 189:5 (1998), 87–114 | MR | Zbl

[14] Lekishvili M. M., “O sopryazhennykh funktsiyakh mnogikh peremennykh”, Soobsch. AN GSSR, 94:1 (1979), 21–23 | MR | Zbl

[15] Danelia A., “Conjugated functions of multiple variables and deformation of $H(\omega;L(T^m))$ classes”, Bull. Georgian Acad. Sci., 156:2 (1997), 199–201 | MR | Zbl

[16] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[17] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR

[18] Oskolkov K. I., “Neusilyaemost otsenki Lebega dlya priblizheniya funktsii s zadannym modulem nepreryvnosti summami Fure”, Tr. MIAN, 62, Nauka, M., 1971, 337–345 | MR

[19] Zhizhiashvili L. V., “Integriruemost i nepreryvnost sopryazhennykh funktsii mnogikh peremennykh”, Soobsch. AN GSSR, 97:1 (1980), 17–20 | MR | Zbl

[20] Storozhenko E. A., “O nekotorykh teoremakh vlozheniya”, Matem. zametki, 19:2 (1976), 187–200 | MR | Zbl