On homological dimensions
Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1165-1179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For finite modules over a local ring the general problem is considered of finding an extension of the class of modules of finite projective dimension preserving various properties. In the first section the concept of a suitable complex is introduced, which is a generalization of both a dualizing complex and a suitable module. Several properties of the dimension of modules with respect to such complexes are established. In particular, a generalization of Golod's theorem on the behaviour of $G_K$-dimension with respect to a suitable module $K$ under factorization by ideals of a special kind is obtained and a new form of the Avramov–Foxby conjecture on the transitivity of $G$-dimension is suggested. In the second section a class of modules containing modules of finite CI-dimension is considered, which has some additional properties. A dimension constructed in the third section characterizes the Cohen–Macaulay rings in precisely the same way as the class of modules of finite projective dimension characterizes regular rings and the class of modules of finite CI-dimension characterizes complete intersections.
@article{SM_2001_192_8_a3,
     author = {A. A. Gerko},
     title = {On homological dimensions},
     journal = {Sbornik. Mathematics},
     pages = {1165--1179},
     year = {2001},
     volume = {192},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_8_a3/}
}
TY  - JOUR
AU  - A. A. Gerko
TI  - On homological dimensions
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1165
EP  - 1179
VL  - 192
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_8_a3/
LA  - en
ID  - SM_2001_192_8_a3
ER  - 
%0 Journal Article
%A A. A. Gerko
%T On homological dimensions
%J Sbornik. Mathematics
%D 2001
%P 1165-1179
%V 192
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2001_192_8_a3/
%G en
%F SM_2001_192_8_a3
A. A. Gerko. On homological dimensions. Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1165-1179. http://geodesic.mathdoc.fr/item/SM_2001_192_8_a3/

[1] Peskine C., Szpiro L., “Dimension projective finié et cohomologie locale”, Publ. Math. IHES, 42 (1972), 47–119 | MR | Zbl

[2] Auslander M., Bridger M., “Stable module theory”, Mem. Amer. Math. Soc., 94, 1969 | MR | Zbl

[3] Foxby H.-B., “Gorenstein modules and related modules”, Math. Scand., 31 (1973), 267–284 | MR | Zbl

[4] Golod E. S., “$\mathrm G$-razmernost i obobschennye sovershennye idealy”, Tr. MIAN, 165, Nauka, M., 1984, 62–66 | MR | Zbl

[5] Avramov L. L., “Modules of finite virtual projective dimension”, Invent. Math., 96:1 (1989), 71–101 | DOI | MR | Zbl

[6] Avramov L. L., Gasharov V. N., Peeva I. V., “Complete intersection dimension”, Publ. Math. IHES, 86 (1997), 67–114 | MR | Zbl

[7] Iyengar S., “Depth for complexes, and intersection theorems”, Math. Z., 230:3 (1999), 545–567 | DOI | MR | Zbl

[8] Araya T., Yoshino Y., “Remarks on a depth formula, a grade inequality and a conjecture of Auslander”, Comm. Algebra, 26:11 (1998), 3793–3806 | DOI | MR | Zbl

[9] Choi S., Iyengar S., “On a depth formula for modules over local rings”, Comm. Algebra (to appear) | MR

[10] Christensen L. W., “Semi-dualizing complexes and their Auslander categories”, Trans. Amer. Math. Soc., 353:5 (2001), 1839–1883 | DOI | MR | Zbl

[11] Avramov L. L., “Ploskie morfizmy ploskikh peresechenii”, Dokl. AN SSSR, 225 (1975), 11–14 | MR | Zbl

[12] Sharp R. Y., “Dualizing complexes for commutative Noetherian rings”, Math. Proc. Camb. Phil. Soc., 78 (1975), 369–386 | DOI | MR | Zbl

[13] Bass H., “On the ubiquity of Gorenstein rings”, Math. Z., 82 (1963), 8–28 | DOI | MR | Zbl

[14] Avramov L. L., Foxby H.-B., “Ring homomorphisms and finite Gorenstein dimension”, Proc. London Math. Soc. (3), Ser. 75, 1997, no. 2, 241–270 | DOI | MR | Zbl

[15] Gulliksen T. H., “A change of the ring theorem, with applications to Poincaré series and intersection multiplicity”, Math. Scand., 34 (1974), 167–183 | MR | Zbl

[16] Tate J., “Homology of noetherian rings and local rings”, Illinois J. Math., 1 (1957), 14–25 | MR

[17] Gulliksen T. H., “A homological characterization of local complete intersections”, Compositio Math., 23 (1971), 251–255 | MR | Zbl

[18] Veliche O., Construction of modules with finite homological dimension, $oveliche/Hdim.ps} http://www.math.purdue.edu/<nobr>${\sim

[19] Avramov L. L., Strogalov S. S., Todorov A. N., “Moduli Gorenshteina”, UMN, 27:4 (1972), 199–200 | MR | Zbl