@article{SM_2001_192_8_a3,
author = {A. A. Gerko},
title = {On homological dimensions},
journal = {Sbornik. Mathematics},
pages = {1165--1179},
year = {2001},
volume = {192},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_8_a3/}
}
A. A. Gerko. On homological dimensions. Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1165-1179. http://geodesic.mathdoc.fr/item/SM_2001_192_8_a3/
[1] Peskine C., Szpiro L., “Dimension projective finié et cohomologie locale”, Publ. Math. IHES, 42 (1972), 47–119 | MR | Zbl
[2] Auslander M., Bridger M., “Stable module theory”, Mem. Amer. Math. Soc., 94, 1969 | MR | Zbl
[3] Foxby H.-B., “Gorenstein modules and related modules”, Math. Scand., 31 (1973), 267–284 | MR | Zbl
[4] Golod E. S., “$\mathrm G$-razmernost i obobschennye sovershennye idealy”, Tr. MIAN, 165, Nauka, M., 1984, 62–66 | MR | Zbl
[5] Avramov L. L., “Modules of finite virtual projective dimension”, Invent. Math., 96:1 (1989), 71–101 | DOI | MR | Zbl
[6] Avramov L. L., Gasharov V. N., Peeva I. V., “Complete intersection dimension”, Publ. Math. IHES, 86 (1997), 67–114 | MR | Zbl
[7] Iyengar S., “Depth for complexes, and intersection theorems”, Math. Z., 230:3 (1999), 545–567 | DOI | MR | Zbl
[8] Araya T., Yoshino Y., “Remarks on a depth formula, a grade inequality and a conjecture of Auslander”, Comm. Algebra, 26:11 (1998), 3793–3806 | DOI | MR | Zbl
[9] Choi S., Iyengar S., “On a depth formula for modules over local rings”, Comm. Algebra (to appear) | MR
[10] Christensen L. W., “Semi-dualizing complexes and their Auslander categories”, Trans. Amer. Math. Soc., 353:5 (2001), 1839–1883 | DOI | MR | Zbl
[11] Avramov L. L., “Ploskie morfizmy ploskikh peresechenii”, Dokl. AN SSSR, 225 (1975), 11–14 | MR | Zbl
[12] Sharp R. Y., “Dualizing complexes for commutative Noetherian rings”, Math. Proc. Camb. Phil. Soc., 78 (1975), 369–386 | DOI | MR | Zbl
[13] Bass H., “On the ubiquity of Gorenstein rings”, Math. Z., 82 (1963), 8–28 | DOI | MR | Zbl
[14] Avramov L. L., Foxby H.-B., “Ring homomorphisms and finite Gorenstein dimension”, Proc. London Math. Soc. (3), Ser. 75, 1997, no. 2, 241–270 | DOI | MR | Zbl
[15] Gulliksen T. H., “A change of the ring theorem, with applications to Poincaré series and intersection multiplicity”, Math. Scand., 34 (1974), 167–183 | MR | Zbl
[16] Tate J., “Homology of noetherian rings and local rings”, Illinois J. Math., 1 (1957), 14–25 | MR
[17] Gulliksen T. H., “A homological characterization of local complete intersections”, Compositio Math., 23 (1971), 251–255 | MR | Zbl
[18] Veliche O., Construction of modules with finite homological dimension, $oveliche/Hdim.ps} http://www.math.purdue.edu/<nobr>${\sim
[19] Avramov L. L., Strogalov S. S., Todorov A. N., “Moduli Gorenshteina”, UMN, 27:4 (1972), 199–200 | MR | Zbl