On modality and complexity of affine embeddings
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1133-1138
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G$ be a reductive algebraic group and let $H$ be a reductive subgroup of $G$. The modality of a $G$-variety $X$ is the largest number of the parameters in a continuous family of $G$-orbits in $X$. A precise formula for the maximum value of the modality over
all affine embeddings of the homogeneous space $G/H$ is obtained.
			
            
            
            
          
        
      @article{SM_2001_192_8_a1,
     author = {I. V. Arzhantsev},
     title = {On modality and complexity of affine embeddings},
     journal = {Sbornik. Mathematics},
     pages = {1133--1138},
     publisher = {mathdoc},
     volume = {192},
     number = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_8_a1/}
}
                      
                      
                    I. V. Arzhantsev. On modality and complexity of affine embeddings. Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1133-1138. http://geodesic.mathdoc.fr/item/SM_2001_192_8_a1/
