On modality and complexity of affine embeddings
Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1133-1138

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a reductive algebraic group and let $H$ be a reductive subgroup of $G$. The modality of a $G$-variety $X$ is the largest number of the parameters in a continuous family of $G$-orbits in $X$. A precise formula for the maximum value of the modality over all affine embeddings of the homogeneous space $G/H$ is obtained.
@article{SM_2001_192_8_a1,
     author = {I. V. Arzhantsev},
     title = {On modality and complexity of affine embeddings},
     journal = {Sbornik. Mathematics},
     pages = {1133--1138},
     publisher = {mathdoc},
     volume = {192},
     number = {8},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_8_a1/}
}
TY  - JOUR
AU  - I. V. Arzhantsev
TI  - On modality and complexity of affine embeddings
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1133
EP  - 1138
VL  - 192
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_8_a1/
LA  - en
ID  - SM_2001_192_8_a1
ER  - 
%0 Journal Article
%A I. V. Arzhantsev
%T On modality and complexity of affine embeddings
%J Sbornik. Mathematics
%D 2001
%P 1133-1138
%V 192
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_8_a1/
%G en
%F SM_2001_192_8_a1
I. V. Arzhantsev. On modality and complexity of affine embeddings. Sbornik. Mathematics, Tome 192 (2001) no. 8, pp. 1133-1138. http://geodesic.mathdoc.fr/item/SM_2001_192_8_a1/