@article{SM_2001_192_7_a7,
author = {N. A. Strelkov},
title = {Spline trigonometric bases and their properties},
journal = {Sbornik. Mathematics},
pages = {1053--1088},
year = {2001},
volume = {192},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_7_a7/}
}
N. A. Strelkov. Spline trigonometric bases and their properties. Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 1053-1088. http://geodesic.mathdoc.fr/item/SM_2001_192_7_a7/
[1] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, no. M., Mir, 1974 | MR | Zbl
[2] Oben Zh.-P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977 | MR
[3] Iosida K., Funktsionalnyi analiz, Mir, M., 1971 | MR
[4] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR
[5] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[6] Levin B. Ya., Tselye funktsii (teksty lektsii), MGU, M., 1971
[7] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[8] Vitushkin A. G., “Approksimatsiya tselykh funktsii i kodirovanie signalov s konechnym spektrom”, Teoriya priblizheniya funktsii, Trudy Mezhdunarodnoi konferentsii po teorii priblizheniya funktsii (Kaluga, 24–28 iyulya 1975 g.), Nauka, M., 1977, 83–89 | MR
[9] Strelkov N. A., “Ermitovy poperechniki, srednyaya razmernost i kratnye ukladki”, Matem. sb., 187:1 (1996), 121–142 | MR | Zbl
[10] Din Zung, Magaril-Ilyaev G. G., “Zadachi tipa Bernshteina i Favara i srednyaya $\varepsilon$-razmernost nekotorykh klassov funktsii”, Dokl. AN SSSR, 249:4 (1979), 783–786 | MR | Zbl
[11] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR