On a measure with maximal entropy for the~special flow on a~local perturbation of a~countable topological Bernoulli scheme
Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 1001-1024
Voir la notice de l'article provenant de la source Math-Net.Ru
This is an investigation of conditions under which the property that a flow has a (unique) measure with maximal entropy is stable under local perturbations of the base.
@article{SM_2001_192_7_a4,
author = {A. B. Polyakov},
title = {On a measure with maximal entropy for the~special flow on a~local perturbation of a~countable topological {Bernoulli} scheme},
journal = {Sbornik. Mathematics},
pages = {1001--1024},
publisher = {mathdoc},
volume = {192},
number = {7},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_7_a4/}
}
TY - JOUR AU - A. B. Polyakov TI - On a measure with maximal entropy for the~special flow on a~local perturbation of a~countable topological Bernoulli scheme JO - Sbornik. Mathematics PY - 2001 SP - 1001 EP - 1024 VL - 192 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_7_a4/ LA - en ID - SM_2001_192_7_a4 ER -
%0 Journal Article %A A. B. Polyakov %T On a measure with maximal entropy for the~special flow on a~local perturbation of a~countable topological Bernoulli scheme %J Sbornik. Mathematics %D 2001 %P 1001-1024 %V 192 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2001_192_7_a4/ %G en %F SM_2001_192_7_a4
A. B. Polyakov. On a measure with maximal entropy for the~special flow on a~local perturbation of a~countable topological Bernoulli scheme. Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 1001-1024. http://geodesic.mathdoc.fr/item/SM_2001_192_7_a4/