On a measure with maximal entropy for the~special flow on a~local perturbation of a~countable topological Bernoulli scheme
Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 1001-1024

Voir la notice de l'article provenant de la source Math-Net.Ru

This is an investigation of conditions under which the property that a flow has a (unique) measure with maximal entropy is stable under local perturbations of the base.
@article{SM_2001_192_7_a4,
     author = {A. B. Polyakov},
     title = {On a measure with maximal entropy for the~special flow on a~local perturbation of a~countable topological {Bernoulli} scheme},
     journal = {Sbornik. Mathematics},
     pages = {1001--1024},
     publisher = {mathdoc},
     volume = {192},
     number = {7},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_7_a4/}
}
TY  - JOUR
AU  - A. B. Polyakov
TI  - On a measure with maximal entropy for the~special flow on a~local perturbation of a~countable topological Bernoulli scheme
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1001
EP  - 1024
VL  - 192
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_7_a4/
LA  - en
ID  - SM_2001_192_7_a4
ER  - 
%0 Journal Article
%A A. B. Polyakov
%T On a measure with maximal entropy for the~special flow on a~local perturbation of a~countable topological Bernoulli scheme
%J Sbornik. Mathematics
%D 2001
%P 1001-1024
%V 192
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_7_a4/
%G en
%F SM_2001_192_7_a4
A. B. Polyakov. On a measure with maximal entropy for the~special flow on a~local perturbation of a~countable topological Bernoulli scheme. Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 1001-1024. http://geodesic.mathdoc.fr/item/SM_2001_192_7_a4/