On a measure with maximal entropy for the special flow on a local perturbation of a countable topological Bernoulli scheme
Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 1001-1024 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is an investigation of conditions under which the property that a flow has a (unique) measure with maximal entropy is stable under local perturbations of the base.
@article{SM_2001_192_7_a4,
     author = {A. B. Polyakov},
     title = {On a measure with maximal entropy for the~special flow on a~local perturbation of a~countable topological {Bernoulli} scheme},
     journal = {Sbornik. Mathematics},
     pages = {1001--1024},
     year = {2001},
     volume = {192},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_7_a4/}
}
TY  - JOUR
AU  - A. B. Polyakov
TI  - On a measure with maximal entropy for the special flow on a local perturbation of a countable topological Bernoulli scheme
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1001
EP  - 1024
VL  - 192
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_7_a4/
LA  - en
ID  - SM_2001_192_7_a4
ER  - 
%0 Journal Article
%A A. B. Polyakov
%T On a measure with maximal entropy for the special flow on a local perturbation of a countable topological Bernoulli scheme
%J Sbornik. Mathematics
%D 2001
%P 1001-1024
%V 192
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2001_192_7_a4/
%G en
%F SM_2001_192_7_a4
A. B. Polyakov. On a measure with maximal entropy for the special flow on a local perturbation of a countable topological Bernoulli scheme. Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 1001-1024. http://geodesic.mathdoc.fr/item/SM_2001_192_7_a4/

[1] Savchenko S. V., “Spetsialnye potoki, postroennye po schetnym topologicheskim tsepyam Markova”, Funkts. analiz i ego prilozh., 32:1 (1998), 40–53 | MR | Zbl

[2] Katok S., “Coding of closed geodesics after Gauss and Morse”, Geom. Dedicata, 63 (1996), 123–145 | DOI | MR | Zbl

[3] Bowen R., “Topological entropy for noncompact sets”, Trans. Amer. Math. Soc., 184 (1973), 125–136 | DOI | MR

[4] Gurevich B. M., Savchenko S. V., “Termodinamicheskii formalizm dlya simvolicheskikh tsepei Markova so schetnym chislom sostoyanii”, UMN, 53:2 (1998), 3–106 | MR | Zbl

[5] Cvetcović D. M., Doob M., Sachs H., Spectra of graphs, Academic Press, New York, 1980 | MR

[6] Gurevich B. M., “Topologicheskaya entropiya schetnoi tsepi Markova”, Dokl. AN SSSR, 187:4 (1969), 715–718 | MR | Zbl

[7] Parry W., Pollicott M., “Zeta functions and the periodic orbit structure of hyperbolic dynamics”, Astérisque, 1990, 187–188 | MR | Zbl

[8] Gurevich B. M., “A variational characterization of one-dimensional countable state Gibbs random fields”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 68 (1984), 205–242 | DOI | MR | Zbl

[9] Abramov L. M., “Ob entropii potoka”, Dokl. AN SSSR, 128:5 (1959), 873–875 | MR | Zbl