Embeddings of fractional Sobolev spaces and estimates of Fourier transforms
Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 979-1000 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fractional anisotropic Sobolev–Liouville spaces $L_p^{r_1,\dots,r_n}(\mathbb R^n)$ are investigated for $1\leqslant p<\infty$ and positive $r_k$. For functions in these spaces estimates of norms in modified spaces of Lorentz and Besov kinds, defined in terms of iterative rearrangements, are established. These estimates are used to prove inequalities for the Fourier transforms of functions in $L_1^{r_1,\dots,r_n}$. This paper continues works of the author in which similar issues have been discussed for integer $r_k$. The methods used in the paper are based on estimates of iterative rearrangements. This approach enables one to simplify proofs and at the same time to obtain stronger results. In particular, the analysis of the limit case $p=1$ becomes much easier.
@article{SM_2001_192_7_a3,
     author = {V. I. Kolyada},
     title = {Embeddings of fractional {Sobolev} spaces and estimates of {Fourier} transforms},
     journal = {Sbornik. Mathematics},
     pages = {979--1000},
     year = {2001},
     volume = {192},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_7_a3/}
}
TY  - JOUR
AU  - V. I. Kolyada
TI  - Embeddings of fractional Sobolev spaces and estimates of Fourier transforms
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 979
EP  - 1000
VL  - 192
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_7_a3/
LA  - en
ID  - SM_2001_192_7_a3
ER  - 
%0 Journal Article
%A V. I. Kolyada
%T Embeddings of fractional Sobolev spaces and estimates of Fourier transforms
%J Sbornik. Mathematics
%D 2001
%P 979-1000
%V 192
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2001_192_7_a3/
%G en
%F SM_2001_192_7_a3
V. I. Kolyada. Embeddings of fractional Sobolev spaces and estimates of Fourier transforms. Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 979-1000. http://geodesic.mathdoc.fr/item/SM_2001_192_7_a3/

[1] Kolyada V. I., “Rearrangement of functions and embedding of anisotropic spaces of Sobolev type”, East J. Approx., 4:2 (1998), 111–199 | MR | Zbl

[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[3] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[4] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[5] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[6] Kolyada V. I., “O vlozhenii prostranstv Soboleva”, Matem. zametki, 54:3 (1993), 48–71 | MR | Zbl

[7] Kolyada V. I., “Estimates of Fourier transforms in Sobolev spaces”, Studia Math., 125:1 (1997), 67–74 | MR | Zbl

[8] Ulyanov P. L., “Vlozhenie nekotorykh klassov funktsii $H_p^\omega$”, Izv. AN SSSR. Ser. matem., 32:3 (1968), 649–686 | MR | Zbl

[9] Ulyanov P. L., “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81:1 (1970), 104–131 | MR | Zbl

[10] Osvald P., Moduli nepreryvnosti ravnoizmerimykh funktsii i priblizhenie funktsii algebraicheskimi polinomami v $L^p$, Diss. $\dots$ kand. fiz.-matem. nauk, Odesskii gos. un-t, Odessa, 1978

[11] Pelczyński A., Senator K., “On isomorphisms of anisotropic Sobolev spaces with “classical Banach spaces” and a Sobolev type embedding theorem”, Studia Math., 84 (1986), 169–215 | MR | Zbl

[12] Pelczyński A., Wojciechowski M., “Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm”, Studia Math., 107 (1993), 61–100 | MR | Zbl

[13] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[14] Bennett C., Sharpley R., Interpolation of operators, Pure Appl. Math., 129, Academic Press, Boston, 1988 | MR

[15] Blozinski A. P., “Multivariate rearrangements and Banach function spaces with mixed norms”, Trans. Amer. Math. Soc., 263:1 (1981), 149–167 | DOI | MR | Zbl

[16] Yatsenko A. A., “Iterativnye perestanovki funktsii i prostranstva Lorentsa”, Izv. vuzov. Ser. matem., 1998, no. 5, 73–77 | MR

[17] Kolyada V. I., “O sootnosheniyakh mezhdu modulyami nepreryvnosti v raznykh metrikakh”, Tr. MIAN, 181, Nauka, M., 1988, 117–136 | MR

[18] Lizorkin P. I., “Neizotropnye besselevy potentsialy. Teoremy vlozheniya dlya prostranstv $L_p^{(r_1,\dots,r_n)}$ s drobnymi proizvodnymi”, Dokl. AN SSSR, 170:3 (1966), 508–511 | MR | Zbl

[19] Lizorkin P. I., “Obobschennoe liuvillevskoe differentsirovanie i metod multiplikatorov v teorii vlozhenii”, Tr. MIAN, 105, Nauka, M., 1969, 89–167 | MR | Zbl