Darboux property of a~non-additive set function
Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 969-978

Voir la notice de l'article provenant de la source Math-Net.Ru

As is known, the range of a finite positive non-atomic measure on a $\sigma$-algebra is a closed interval. In the present paper it is proved that this property holds also in a broad class of non-additive set functions on an $F$-algebra if the non-atomicity is replaced by the Saks property.
@article{SM_2001_192_7_a2,
     author = {V. M. Klimkin and M. G. Svistula},
     title = {Darboux property of a~non-additive set function},
     journal = {Sbornik. Mathematics},
     pages = {969--978},
     publisher = {mathdoc},
     volume = {192},
     number = {7},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_7_a2/}
}
TY  - JOUR
AU  - V. M. Klimkin
AU  - M. G. Svistula
TI  - Darboux property of a~non-additive set function
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 969
EP  - 978
VL  - 192
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_7_a2/
LA  - en
ID  - SM_2001_192_7_a2
ER  - 
%0 Journal Article
%A V. M. Klimkin
%A M. G. Svistula
%T Darboux property of a~non-additive set function
%J Sbornik. Mathematics
%D 2001
%P 969-978
%V 192
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_7_a2/
%G en
%F SM_2001_192_7_a2
V. M. Klimkin; M. G. Svistula. Darboux property of a~non-additive set function. Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 969-978. http://geodesic.mathdoc.fr/item/SM_2001_192_7_a2/