Darboux property of a~non-additive set function
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 969-978
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			As is known, the range of a finite positive non-atomic measure on a $\sigma$-algebra is a closed interval. In the present paper it is proved that this property holds also in  a broad class of non-additive set functions on an $F$-algebra if the non-atomicity is replaced by the Saks property.
			
            
            
            
          
        
      @article{SM_2001_192_7_a2,
     author = {V. M. Klimkin and M. G. Svistula},
     title = {Darboux property of a~non-additive set function},
     journal = {Sbornik. Mathematics},
     pages = {969--978},
     publisher = {mathdoc},
     volume = {192},
     number = {7},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_7_a2/}
}
                      
                      
                    V. M. Klimkin; M. G. Svistula. Darboux property of a~non-additive set function. Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 969-978. http://geodesic.mathdoc.fr/item/SM_2001_192_7_a2/
