Integrable geodesic flows on homogeneous spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 951-968
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that the geodesic flow of a bi-invariant metric on an arbitrary homogeneous space of a compact Lie group is Liouville-integrable in the non-commutative sense.
			
            
            
            
          
        
      @article{SM_2001_192_7_a1,
     author = {A. V. Bolsinov and B. Jovanovi\'c},
     title = {Integrable geodesic flows on homogeneous spaces},
     journal = {Sbornik. Mathematics},
     pages = {951--968},
     publisher = {mathdoc},
     volume = {192},
     number = {7},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_7_a1/}
}
                      
                      
                    A. V. Bolsinov; B. Jovanović. Integrable geodesic flows on homogeneous spaces. Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 951-968. http://geodesic.mathdoc.fr/item/SM_2001_192_7_a1/
