Integrable geodesic flows on homogeneous spaces
Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 951-968

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the geodesic flow of a bi-invariant metric on an arbitrary homogeneous space of a compact Lie group is Liouville-integrable in the non-commutative sense.
@article{SM_2001_192_7_a1,
     author = {A. V. Bolsinov and B. Jovanovi\'c},
     title = {Integrable geodesic flows on homogeneous spaces},
     journal = {Sbornik. Mathematics},
     pages = {951--968},
     publisher = {mathdoc},
     volume = {192},
     number = {7},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_7_a1/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - B. Jovanović
TI  - Integrable geodesic flows on homogeneous spaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 951
EP  - 968
VL  - 192
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_7_a1/
LA  - en
ID  - SM_2001_192_7_a1
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A B. Jovanović
%T Integrable geodesic flows on homogeneous spaces
%J Sbornik. Mathematics
%D 2001
%P 951-968
%V 192
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_7_a1/
%G en
%F SM_2001_192_7_a1
A. V. Bolsinov; B. Jovanović. Integrable geodesic flows on homogeneous spaces. Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 951-968. http://geodesic.mathdoc.fr/item/SM_2001_192_7_a1/