Averaging in a~perforated domain with an~oscillating third boundary condition
Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 933-949

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an example averaging problem for a second-order elliptic equation in a periodically perforated domain with a third boundary condition (Fourier condition) on the boundary of the holes. Under the assumption that the coefficients of the boundary operator are bounded and the corresponding averages are small we construct the leading terms of the asymptotic expansion of the solution and estimate the error.
@article{SM_2001_192_7_a0,
     author = {A. G. Belyaev and A. L. Piatnitski and G. A. Chechkin},
     title = {Averaging in a~perforated domain with an~oscillating third boundary condition},
     journal = {Sbornik. Mathematics},
     pages = {933--949},
     publisher = {mathdoc},
     volume = {192},
     number = {7},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_7_a0/}
}
TY  - JOUR
AU  - A. G. Belyaev
AU  - A. L. Piatnitski
AU  - G. A. Chechkin
TI  - Averaging in a~perforated domain with an~oscillating third boundary condition
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 933
EP  - 949
VL  - 192
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_7_a0/
LA  - en
ID  - SM_2001_192_7_a0
ER  - 
%0 Journal Article
%A A. G. Belyaev
%A A. L. Piatnitski
%A G. A. Chechkin
%T Averaging in a~perforated domain with an~oscillating third boundary condition
%J Sbornik. Mathematics
%D 2001
%P 933-949
%V 192
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_7_a0/
%G en
%F SM_2001_192_7_a0
A. G. Belyaev; A. L. Piatnitski; G. A. Chechkin. Averaging in a~perforated domain with an~oscillating third boundary condition. Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 933-949. http://geodesic.mathdoc.fr/item/SM_2001_192_7_a0/