@article{SM_2001_192_7_a0,
author = {A. G. Belyaev and A. L. Piatnitski and G. A. Chechkin},
title = {Averaging in a~perforated domain with an~oscillating third boundary condition},
journal = {Sbornik. Mathematics},
pages = {933--949},
year = {2001},
volume = {192},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_7_a0/}
}
TY - JOUR AU - A. G. Belyaev AU - A. L. Piatnitski AU - G. A. Chechkin TI - Averaging in a perforated domain with an oscillating third boundary condition JO - Sbornik. Mathematics PY - 2001 SP - 933 EP - 949 VL - 192 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2001_192_7_a0/ LA - en ID - SM_2001_192_7_a0 ER -
A. G. Belyaev; A. L. Piatnitski; G. A. Chechkin. Averaging in a perforated domain with an oscillating third boundary condition. Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 933-949. http://geodesic.mathdoc.fr/item/SM_2001_192_7_a0/
[1] Homogenization and porous media, ed. Hornung U., Springer-Verlag, Berlin, 1997 | MR
[2] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl
[3] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974 | MR
[4] Iosifyan G. A., Oleinik O. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl
[5] Sanchez-Palencia E., Homogenization techniques for composite media, Springer-Verlag, Berlin, 1987 | MR | Zbl
[6] Saint Jean Paulin J., Cioranescu D., Homogenization of reticulated structures, Appl. Math. Sci., 136, Springer-Verlag, Berlin, 1999 | MR
[7] Cioranescu D., Murat F., “Un terme étrange venu d'ailleurs”, Nonlinear partial differential equations and their applications, Res. Notes in Math., 60, Pitman, London, 1982, 98–138 | MR
[8] Sukretnyi V. I., “Usrednenie kraevykh zadach dlya ellipticheskikh uravnenii v perforirovannykh oblastyakh”, UMN, 38:6 (1983), 125–126 | MR | Zbl
[9] Sukretnyi V. I., “Asimptoticheskoe razlozhenie reshenii tretei kraevoi zadachi dlya ellipticheskikh uravnenii vtorogo poryadka v perforirovannykh oblastyakh”, UMN, 39:4 (1984), 120–121 | MR
[10] Sukretnyi V. I., O zadache statsionarnoi teploprovodnosti v perforirovannykh oblastyakh, Preprint 84.48, In-t matematiki AN USSR, Kiev, 1984 | MR
[11] Pastukhova S. E., “Usrednenie smeshannoi zadachi s kosoi proizvodnoi dlya ellipticheskogo operatora v perforirovannoi oblasti”, Differents. uravneniya, 30:8 (1994), 1445–1456 | MR | Zbl
[12] Pastukhova S. E., “O pogreshnosti usredneniya dlya zadachi Steklova v perforirovannoi oblasti”, Differents. uravneniya, 31:6 (1995), 1042–1054 | MR
[13] Cioranescu D., Donato P., “Homogénéisation du problème de Neumann non homogène dans des ouverts perforés”, Asymptotic Anal., 1 (1988), 115–138 | MR | Zbl
[14] Belyaev A. G., Pyatnitskii A. L., Chechkin G. A., “Asimptoticheskoe povedenie resheniya kraevoi zadachi v perforirovannoi oblasti s ostsilliruyuschei granitsei”, Sib. matem. zhurn., 39:4 (1998), 730–754 | MR | Zbl
[15] Chechkin G. A., Piatnitski A. L., “Homogenization of boundary-value problem in a locally periodic perforated domain”, Appl. Anal., 71:1–4 (1999), 215–235 | DOI | MR | Zbl
[16] Pastukhova S. E., “Metod kompensirovannoi kompaktnosti Tartara v usrednenii spektra smeshannoi zadachi dlya ellipticheskogo uravneniya v perforirovannoi oblasti s tretim kraevym usloviem”, Matem. sb., 186:5 (1995), 127–144 | MR | Zbl
[17] Pastukhova S. E., “O kharaktere raspredeleniya polya temperatur v perforirovannom tele s zadannym ego znacheniem na vneshnei granitse v usloviyakh teploobmena na granitse polostei po zakonu Nyutona”, Matem. sb., 187:6 (1996), 85–96 | MR | Zbl
[18] Pastukhova S. E., “Obosnovanie asimptotiki resheniya smeshannoi zadachi dlya statsionarnoi teploprovodnosti v perforirovannoi oblasti”, Tr. MMO, 58, URSS, M., 1997, 88–101 | MR | Zbl
[19] Volkov D. B., “Ob osrednenii nekotorykh kraevykh zadach v oblastyakh s periodicheskoi strukturoi”, ZhVM i MF, 22:1 (1982), 112–122 | MR | Zbl
[20] Cioranescu D., Saint Jean Paulin J., “Truss structures: Fourier conditions and eigenvalue problems”, Boundary control and boundary variation, Lecture Notes Control Inf. Sci., 178, ed. J. P. Zolezio, Springer-Verlag, Berlin, 1992, 125–141 | MR
[21] Cioranescu D., Donato P., “On a Robin problem in perforated domains”, Homogenization and applications to material sciences, GAKUTO International Series. Mathematical Sciences and Applications, 9, eds. D. Cioranescu, A. Damlamian, P. Donato, Gakkōtosho, Tokyo, 1997, 123–135 | MR
[22] Murat F., Tartar L., Calcul des variations et homogénéisation, R 84012, Université Pierre et Marie Curie, Centre National de la Recherche Scientifique, Laboratoire d'analyse numérique, Paris, 1984 | MR
[23] Topics in mathematical modelling of composite materials, eds. Cherkaev A., Kohn R., Birkhäuser, Boston, 1997 | MR
[24] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl
[25] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl
[26] Neuss-Radu M., “Some extensions of two-scale convergence”, C. R. Acad. Sci. Paris Sér. I Math., 322:9 (1996), 899–904 | MR | Zbl
[27] Bakhvalov N. S., “Usrednennye kharakteristiki tel s periodicheskoi strukturoi”, Dokl. AN SSSR, 218:5 (1974), 1046–1048 | MR
[28] Bakhvalov N. S., “Usrednenie differentsialnykh uravnenii s chastnymi proizvodnymi s bystro ostsilliruyuschimi koeffitsientami”, Dokl. AN SSSR, 221:3 (1975), 516–519 | MR | Zbl
[29] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl
[30] Chechkin G. A., Friedman A., Piatnitski A. L., “The boundary-value problem in domains with very rapidly oscillating boundary”, J. Math. Anal. Appl., 231:1 (1999), 213–234 | DOI | MR | Zbl