Averaging in a~perforated domain with an~oscillating third boundary condition
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 933-949
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study an example averaging problem for a second-order elliptic equation in a periodically perforated domain with a third boundary condition (Fourier condition) on the boundary of the holes. Under the assumption that the coefficients of the boundary operator are bounded and the corresponding averages are small we construct the leading terms of the asymptotic expansion of the solution and estimate the error.
			
            
            
            
          
        
      @article{SM_2001_192_7_a0,
     author = {A. G. Belyaev and A. L. Piatnitski and G. A. Chechkin},
     title = {Averaging in a~perforated domain with an~oscillating third boundary condition},
     journal = {Sbornik. Mathematics},
     pages = {933--949},
     publisher = {mathdoc},
     volume = {192},
     number = {7},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_7_a0/}
}
                      
                      
                    TY - JOUR AU - A. G. Belyaev AU - A. L. Piatnitski AU - G. A. Chechkin TI - Averaging in a~perforated domain with an~oscillating third boundary condition JO - Sbornik. Mathematics PY - 2001 SP - 933 EP - 949 VL - 192 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_7_a0/ LA - en ID - SM_2001_192_7_a0 ER -
A. G. Belyaev; A. L. Piatnitski; G. A. Chechkin. Averaging in a~perforated domain with an~oscillating third boundary condition. Sbornik. Mathematics, Tome 192 (2001) no. 7, pp. 933-949. http://geodesic.mathdoc.fr/item/SM_2001_192_7_a0/
