Newtonian normal shift in multidimensional Riemannian geometry
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 895-932

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit description of all Newtonian dynamical systems admitting normal shift in Riemannian manifolds of dimension $n\geqslant 3$ is obtained. On this basis the kinematics of the normal shift of hypersurfaces along trajectories of such dynamical systems is studied.
@article{SM_2001_192_6_a6,
     author = {R. A. Sharipov},
     title = {Newtonian normal shift in multidimensional {Riemannian} geometry},
     journal = {Sbornik. Mathematics},
     pages = {895--932},
     publisher = {mathdoc},
     volume = {192},
     number = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a6/}
}
TY  - JOUR
AU  - R. A. Sharipov
TI  - Newtonian normal shift in multidimensional Riemannian geometry
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 895
EP  - 932
VL  - 192
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_6_a6/
LA  - en
ID  - SM_2001_192_6_a6
ER  - 
%0 Journal Article
%A R. A. Sharipov
%T Newtonian normal shift in multidimensional Riemannian geometry
%J Sbornik. Mathematics
%D 2001
%P 895-932
%V 192
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_6_a6/
%G en
%F SM_2001_192_6_a6
R. A. Sharipov. Newtonian normal shift in multidimensional Riemannian geometry. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 895-932. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a6/