Newtonian normal shift in multidimensional Riemannian geometry
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 895-932 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An explicit description of all Newtonian dynamical systems admitting normal shift in Riemannian manifolds of dimension $n\geqslant 3$ is obtained. On this basis the kinematics of the normal shift of hypersurfaces along trajectories of such dynamical systems is studied.
@article{SM_2001_192_6_a6,
     author = {R. A. Sharipov},
     title = {Newtonian normal shift in multidimensional {Riemannian} geometry},
     journal = {Sbornik. Mathematics},
     pages = {895--932},
     year = {2001},
     volume = {192},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a6/}
}
TY  - JOUR
AU  - R. A. Sharipov
TI  - Newtonian normal shift in multidimensional Riemannian geometry
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 895
EP  - 932
VL  - 192
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_6_a6/
LA  - en
ID  - SM_2001_192_6_a6
ER  - 
%0 Journal Article
%A R. A. Sharipov
%T Newtonian normal shift in multidimensional Riemannian geometry
%J Sbornik. Mathematics
%D 2001
%P 895-932
%V 192
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2001_192_6_a6/
%G en
%F SM_2001_192_6_a6
R. A. Sharipov. Newtonian normal shift in multidimensional Riemannian geometry. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 895-932. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a6/

[1] Boldin A. Yu., Sharipov R. A., Dynamical systems accepting the normal shift, Preprint No 0001-M, Bashkir State Univ., Ufa, 1993 | MR

[2] Boldin A. Yu., Sharipov R. A., “Dinamicheskie sistemy, dopuskayuschie normalnyi sdvig”, TMF, 97:3 (1993), 386–395 ; http://xxx.lanl.gov/abs/chao-dyn/9403003 | MR | Zbl

[3] Boldin A. Yu., Sharipov R. A., “Mnogomernye dinamicheskie sistemy, dopuskayuschie normalnyi sdvig”, TMF, 100:2 (1994), 264–269 ; http://xxx.lanl.gov/abs/patt-sol/9404001 | MR | Zbl

[4] Boldin A. Yu., Sharipov R. A., “Dinamicheskie sistemy, dopuskayuschie normalnyi sdvig”, Dokl. RAN, 334:2 (1994), 165–167 | MR | Zbl

[5] Sharipov R. A., “Problema metrizuemosti dinamicheskikh sistem, dopuskayuschikh normalnyi sdvig”, TMF, 101:1 (1994), 85–93 ; http://xxx.lanl.gov/abs/solv-int/9404003 | MR | Zbl

[6] Boldin A. Yu., Dmitrieva V. V., Safin S. S., Sharipov R. A., “Dinamicheskie sistemy na rimanovykh mnogoobraziyakh, dopuskayuschie normalnyi sdvig”, TMF, 105:2 (1995), 256–266 ; http://xxx.lanl.gov/abs/hep-th/9405021 | MR

[7] Boldin A. Yu., Bronnikov A. A., Dmitrieva V. V., Sharipov R. A., “Usloviya polnoi normalnosti dlya dinamicheskikh sistem na rimanovykh mnogoobraziyakh”, TMF, 103:2 (1995), 267–275 ; http://xxx.lanl.gov/abs/astro-ph/9405049 | MR | Zbl

[8] Boldin A. Yu., “On the self-similar solutions of normality equation in two-dimensional case”, Dynamical systems accepting the normal shift, Bashkir State Univ., Ufa, 1994, 31–39; http://xxx.lanl.gov/abs/patt-sol/9407002

[9] Sharipov R. A., “Metrizuemost dinamicheskikh sistem konformno-ekvivalentnoi metrikoi”, TMF, 103:2 (1995), 276–282 | MR | Zbl

[10] Sharipov R. A., “Dinamicheskie sistemy, dopuskayuschie normalnyi sdvig”, UMN, 49:4 (1994), 105

[11] Sharipov R. A., “Higher dynamical systems accepting the normal shift”, Dynamical systems accepting the normal shift, Bashkir State Univ., Ufa, 1994, 41–65

[12] Dmitrieva V. V., “Ob ekvivalentnosti dvukh form zapisi uravnenii normalnosti dlya dinamicheskikh sistem $\mathbb R^n$”, Integriruemost v dinamicheskikh sistemakh, In-t matem. BNTs UrO RAN, Ufa, 1994, 5–16 | MR | Zbl

[13] Bronnikov A. A., Sharipov R. A., “Axially symmetric dynamical systems accepting the normal shift in $\mathbb R^n$”, Integriruemost v dinamicheskikh sistemakh, In-t matem. BNTs UrO RAN, Ufa, 1994, 62–69 | MR | Zbl

[14] Boldin A. Yu., Sharipov R. A., “O reshenii uravnenii normalnosti v razmernosti $n\ge3$”, Algebra i analiz, 10:4 (1998), 37–61 ; http://xxx.lanl.gov/abs/solv-int/9610006 | MR | Zbl

[15] Sharipov R. A., Dinamicheskie sistemy, dopuskayuschie normalnyi sdvig, Diss. $\dots$ dokt. fiz.-matem. nauk, 1999; http://xxx.lanl.gov/abs/math.DG/0002202

[16] Boldin A. Yu., Dvumernye dinamicheskie sistemy, dopuskayuschie normalnyi sdvig, Diss. ... kand. fiz.-matem. nauk, 2000; http://xxx.lanl.gov/abs/math.DG/0011134

[17] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981

[18] Novikov S. P., Fomenko A. T., Elementy differentsialnoi geometrii i topologii, Nauka, M., 1985 | MR

[19] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, T. 1, Nauka, M., 1986 | MR | Zbl

[20] Sharipov R. A., Kurs differentsialnoi geometrii, Izd-vo BashGU, Ufa, 1996

[21] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984

[22] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1980 | MR | Zbl

[23] Liouville R., “Sur les invariants de certaines équations différentielles et sur leurs applications”, J. École Politechnique, 59 (1889), 7–88

[24] Tresse M. A., Determination des invariants ponctuels de l'equation differentielle du second ordre $y''=w(x,y,y')$, Hirzel, Leiptzig, 1896

[25] Cartan E., “Sur les varietes a connection projective”, Bull. Soc. Math. France, 52 (1924), 205–241 | MR | Zbl

[26] Cartan E., “Sur les varietes a connexion affine et la theorie de la relativite generalisee”, Ann. Sci. École Norm., 40 (1923), 325–412 ; 41 (1924), 1–25 ; 42 (1925), 17–88 | MR | MR | Zbl | MR | Zbl

[27] Cartan E., “Sur les espaces a connexion conforme”, Ann. Soc. Math. Pologne, 2 (1923), 171–221

[28] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Izd-vo KGU, Kazan, 1962 | MR

[29] Bol G., “Über topologishe Invarianten von zwei Kurvenscharen in Raum”, Abh. Math. Sem. Univ. Hamburg, 9:1 (1932), 15–47 | DOI | MR | Zbl

[30] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[31] Kamran N., Lamb K. G., Shadwick W. F., “The local equivalence problem for $d^2y/dx^2=F(x,y,dy/dx)$ and the Painleve transcendents”, J. Differential Geometry, 22 (1985), 139–150 | MR | Zbl

[32] Dryuma V. S., Geometricheskaya teoriya nelineinykh dinamicheskikh sistem, Preprint, Matem. in-t Respubliki Moldova, Kishinev, 1986

[33] Dryuma V. S., “O teorii podmnogoobrazii proektivnykh prostranstv, zadannykh differentsialnymi uravneniyami”, Differentsialnye uravneniya i matematicheskaya fizika, Matem. issledovaniya, 106, Matem. in-t Respubliki Moldova, Kishinev, 1989, 79–87 | MR | Zbl

[34] Romanovskii Yu. R., “Vychislenie lokalnykh simmetrii obyknovennykh differentsialnykh uravnenii vtorogo poryadka metodom ekvivalentnosti Kartana”, Matem. zametki, 60:1 (1996), 75–91 | MR | Zbl

[35] Hsu L., Kamran N., “Classification of ordinary differential equations”, Proc. London Math. Soc., 58 (1989), 387–416 | DOI | MR | Zbl

[36] Grissom C., Thompson G., Wilkens G., “Linearization of second order ordinary differential equations via Cartan's equivalence method”, J. Differential Equations, 77:1 (1989), 1–15 | DOI | MR | Zbl

[37] Kamran N., Olver P., “Equivalence problems for first order Lagrangians on the line”, J. Differential Equations, 80 (1989), 32–78 | DOI | MR | Zbl

[38] Kamran N., Olver P., “Equivalence of differential operators”, SIAM J. Math. Anal., 20 (1989), 1172–1185 | DOI | MR | Zbl

[39] Mahomed F. M., “Lie algebras associated with scalar second order ordinary differential equations”, J. Math. Phys., 12 (1989), 2770–2777 | DOI | MR | Zbl

[40] Kamran N., Olver P., “Lie algebras of differential operators and Lie-algebraic potentials”, J. Math. Anal. Appl., 145 (1990), 342–356 | DOI | MR | Zbl

[41] Kamran N., Olver P., “Equivalence of higher order Lagrangians. I: Formulation and reduction”, J. Math. Pures Appl., 70 (1991), 369–391 | MR | Zbl

[42] Kamran N., Olver P., “Equivalence of higher order Lagrangians. III: New invariant differential equations”, Nonlinearity, 5 (1992), 601–621 | DOI | MR | Zbl

[43] Bocharov A. V., Sokolov V. V., Svinolupov S. I., On some equivalence problems for differential equations, Preprint ESI-54, International Erwin Srödinger Inst. for Math. Physics, Wien, Austria, 1993

[44] Dryuma V. S., “Geometricheskie svoistva mnogomernykh nelineinykh differentsialnykh uravnenii i fazovoe prostranstvo dinamicheskikh sistem s finslerovoi metrikoi”, TMF, 99:2 (1994), 241–249 | MR | Zbl

[45] Dmitrieva V. V., Sharipov R. A., On the point transformations for the second order differential equations, http://xxx.lanl.gov/abs/solv-int/9703003

[46] Sharipov R. A., On the point transformations for the equation $y''=P+3Qy'+3R{y'}^2+S{y'}^3$, http://xxx.lanl.gov/abs/solv-int/9706003

[47] Mikhailov O. N., Sharipov R. A., On the point expansion for the certain class of differential equations of second order, http://xxx.lanl.gov/abs/solv-int/9712001

[48] Sharipov R. A., Effective procedure of point classification for the equation $y''=P+3Qy'+3R{y'}^2+S{y'}^3$, http://xxx.lanl.gov/abs/math.DG/9802027

[49] Kudryavtsev L. D., Kurs matematicheskogo analiza, T. 1, 2, Nauka, M., 1985

[50] Ilin V. A., Sadovnichii V. A., Sendov B. Kh., Matematicheskii analiz, Nauka, M., 1979 | MR

[51] Norden A. P., Teoriya poverkhnostei, Gostekhizdat, M., 1956

[52] Bolsinov A. V., “O klassifikatsii dvumernykh gamiltonovykh sistem na dvumernykh poverkhnostyakh”, UMN, 49:6 (1994), 195–196 | MR | Zbl

[53] Bolsinov A. V., “Gladkaya traektornaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody, sluchai sistem s ploskimi atomami”, UMN, 49:3 (1994), 173–174 | MR | Zbl

[54] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya integriruemykh sistem tipa Eilera v dinamike tverdogo tela”, UMN, 48:5 (1993), 163–164 | MR | Zbl

[55] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody, I”, Matem. sb., 185:4 (1994), 27–80 | MR | Zbl

[56] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody, II”, Matem. sb., 185:5 (1994), 27–78 | MR | Zbl

[57] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya integriruemykh gamiltonovykh sistem na trekhmernykh poverkhnostyakh postoyannoi energii”, Dokl. RAN, 332:5 (1993), 553–555 | MR | Zbl

[58] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, UMN, 45:2 (1990), 49–77 | MR | Zbl