Newtonian normal shift in multidimensional Riemannian geometry
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 895-932
Voir la notice de l'article provenant de la source Math-Net.Ru
An explicit description of all Newtonian dynamical systems admitting normal shift in Riemannian manifolds of dimension $n\geqslant 3$ is obtained. On this basis the kinematics of the normal shift of hypersurfaces along trajectories of such dynamical systems is studied.
@article{SM_2001_192_6_a6,
author = {R. A. Sharipov},
title = {Newtonian normal shift in multidimensional {Riemannian} geometry},
journal = {Sbornik. Mathematics},
pages = {895--932},
publisher = {mathdoc},
volume = {192},
number = {6},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a6/}
}
R. A. Sharipov. Newtonian normal shift in multidimensional Riemannian geometry. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 895-932. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a6/