Solutions of the equation $\Delta u=f(x,y)e^{cu}$ in some special cases
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 879-894
Cet article a éte moissonné depuis la source Math-Net.Ru
The equation $\Delta u=f(x,y)e^{cu}$ is considered in the case when the coefficient $f(x,y)$ is the absolute value or the square of the absolute value of some holomorphic function. In this case a full description of the general solution of the equation is presented. Several problems usually posed for elliptic equations are also discussed.
@article{SM_2001_192_6_a5,
author = {I. Kh. Sabitov},
title = {Solutions of the equation $\Delta u=f(x,y)e^{cu}$ in some special cases},
journal = {Sbornik. Mathematics},
pages = {879--894},
year = {2001},
volume = {192},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a5/}
}
I. Kh. Sabitov. Solutions of the equation $\Delta u=f(x,y)e^{cu}$ in some special cases. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 879-894. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a5/
[1] Sabitov I. Kh., “Minimalnaya poverkhnost”, Matem. entsiklopediya, T. 3, Sovetskaya entsiklopediya, M., 1982, 684–690
[2] Nitsche J. C. C., Vorlesungen über Minimalflächen, Springer-Verlag, Berlin, 1975 | MR | Zbl
[3] Ikramov Kh. D., Zadachnik po lineinoi algebre, Nauka, M., 1975 | MR
[4] Blyashke V., Differentsialnaya geometriya, ONTI NKTP, M.–L., 1935
[5] Sabitov I. Kh., “Minimalnaya poverkhnost kak diagramma vrascheniya sfery”, Matem. zametki, 2:6 (1967), 645–656 | MR
[6] Smirnov V. I., Kurs vysshei matematiki, T. III. Ch. 2, GITTL, M., 1956
[7] Vekua I. N., “Zamechaniya o svoistvakh reshenii uravneniya $\Delta u=-Ke^{2u}$”, Sib. matem. zhurn., 1:3 (1960), 331–342 | MR | Zbl