Solutions of the equation $\Delta u=f(x,y)e^{cu}$ in some special cases
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 879-894
Voir la notice de l'article provenant de la source Math-Net.Ru
The equation $\Delta u=f(x,y)e^{cu}$ is considered in the case when the coefficient $f(x,y)$ is the absolute value or the square of the absolute value of some holomorphic function. In this case a full description of the general solution of the equation is presented. Several problems usually posed for elliptic equations are also discussed.
@article{SM_2001_192_6_a5,
author = {I. Kh. Sabitov},
title = {Solutions of the equation $\Delta u=f(x,y)e^{cu}$ in some special cases},
journal = {Sbornik. Mathematics},
pages = {879--894},
publisher = {mathdoc},
volume = {192},
number = {6},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a5/}
}
I. Kh. Sabitov. Solutions of the equation $\Delta u=f(x,y)e^{cu}$ in some special cases. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 879-894. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a5/