Impossibility of constructing continuous functions of $(n+1)$ variables from functions of $n$ variables by means of certain continuous operators
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 863-878 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Continuous functions on a unit cube are considered. The concept of continuity regulator is introduced: in the definition of uniform continuity it governs the transition "from $\varepsilon$ to $\delta$". The problem of obtaining continuous functions of $(n+1)$ variables with continuity regulator $\delta$ variables with the same continuity regulator by means of uniformly continuous operators with continuity regulators that are superpositions of the regulator $\delta$ is posed. The insolubility of this problem is demonstrated for continuity regulators $\delta$ ($\varepsilon$) such that for each $\alpha\geqslant0$ the inequality $\delta(\varepsilon)\geqslant\varepsilon^{1+\alpha}$ holds starting from some $\varepsilon_\alpha$.
@article{SM_2001_192_6_a4,
     author = {S. S. Marchenkov},
     title = {Impossibility of constructing continuous functions of $(n+1)$ variables from functions of $n$ variables by means of certain continuous operators},
     journal = {Sbornik. Mathematics},
     pages = {863--878},
     year = {2001},
     volume = {192},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a4/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Impossibility of constructing continuous functions of $(n+1)$ variables from functions of $n$ variables by means of certain continuous operators
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 863
EP  - 878
VL  - 192
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_6_a4/
LA  - en
ID  - SM_2001_192_6_a4
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Impossibility of constructing continuous functions of $(n+1)$ variables from functions of $n$ variables by means of certain continuous operators
%J Sbornik. Mathematics
%D 2001
%P 863-878
%V 192
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2001_192_6_a4/
%G en
%F SM_2001_192_6_a4
S. S. Marchenkov. Impossibility of constructing continuous functions of $(n+1)$ variables from functions of $n$ variables by means of certain continuous operators. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 863-878. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a4/

[1] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh superpozitsiyami nepreryvnykh funktsii menshego chisla peremennykh”, Dokl. AN SSSR, 108:2 (1956), 179–182 | MR

[2] Arnold V. I., “O funktsiyakh trekh peremennykh”, Dokl. AN SSSR, 114:4 (1957), 679–681 | MR

[3] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnogo peremennogo i slozheniya”, Dokl. AN SSSR, 114:5 (1957), 953–956 | MR

[4] Vitushkin A. G., “K trinadtsatoi probleme Gilberta”, Dokl. AN SSSR, 95:4 (1954), 701–704 | MR | Zbl

[5] Vitushkin A. G., O mnogomernykh variatsiyakh, Gostekhizdat, M., 1955

[6] Kolmogorov A. N., “Otsenki minimalnogo chisla elementov $\varepsilon$-setei v razlichnykh funktsionalnykh klassakh i ikh primenenie k voprosu o predstavimosti funktsii neskolkikh peremennykh superpozitsiyami funktsii menshego chisla peremennykh”, UMN, 10:1 (1955), 192–194

[7] Vitushkin A. G., Khenkin G. M., “Lineinye superpozitsii funktsii”, UMN, 22:1 (1967), 77–124 | MR | Zbl

[8] Vitushkin A. G., “On representation of functions by means of superpositions and related topics”, Enseign. Math. (2), 23:3–4 (1977), 255–320 | MR | Zbl

[9] Gashkov S. B., “O slozhnosti priblizhennoi realizatsii funktsionalnykh kompaktov v nekotorykh prostranstvakh i o suschestvovanii funktsii s zadannoi po poryadku slozhnostyu”, Fundament. i prikl. matem., 2:3 (1996), 675–774 | MR | Zbl

[10] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1986 | MR

[11] Marchenkov S. S., “Ob odnom metode analiza superpozitsii nepreryvnykh funktsii”, Problemy kibernetiki, no. 37, Nauka, M., 1980, 5–17 | MR

[12] Marchenkov S. S., “O superpozitsiyakh nepreryvnykh funktsii, zadannykh na berovskom prostranstve”, Matem. zametki, 66:5 (1999), 696–705 | MR | Zbl