Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 843-861 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\gamma(r)$ be a growth function and let $v(z)$ be a proper $\delta$-subharmonic function in the sense of Grishin in a complex half-plane, that is $v=v_1-v_2$, where $v_1$ and $v_2$ are proper subharmonic functions $(\lim\sup_{z\to t}v_i(z)\leqslant0$, for each real $t$, $i=1,2)$, let $\lambda=\lambda_+-\lambda_-$ be the full measure corresponding to $v$ and let $T(r,v)$ be its Nevanlinna characteristic. The class $J\delta(\gamma)$ of functions of finite $\gamma$-type is defined as follows: $v\in J\delta(\gamma)$ if $T(r,v)\leqslant A\gamma(Br)/r$ for some positive constants $A$ and $B$. The Fourier coefficients of $v$ are defined in the standard way: $$ c_k(r,v)=\frac 2\pi\int_0^\pi v(re^{i\theta})\sin k\theta\,d\theta, \qquad r>0, \quad k\in\mathbb N. $$ The central result of the paper is the equivalence of the following properties: (1) $v\in J\delta(\gamma)$; (2) $N(r)\leqslant A_1\gamma(B_1r)/r$, where $N(r)=N(r,\lambda_+)$ or $N(r)=N(r,\lambda_-)$, and $|c_k(r,v)|\leqslant A_2\gamma(B_2r)$. It is proved in addition that $J\delta(\gamma)=JS(\gamma)-JS(\gamma)$, where $JS(\gamma)$ is the class of proper subharmonic functions of finite $\gamma$-type.
@article{SM_2001_192_6_a3,
     author = {K. G. Malyutin},
     title = {Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a~half-plane},
     journal = {Sbornik. Mathematics},
     pages = {843--861},
     year = {2001},
     volume = {192},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a3/}
}
TY  - JOUR
AU  - K. G. Malyutin
TI  - Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 843
EP  - 861
VL  - 192
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_6_a3/
LA  - en
ID  - SM_2001_192_6_a3
ER  - 
%0 Journal Article
%A K. G. Malyutin
%T Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane
%J Sbornik. Mathematics
%D 2001
%P 843-861
%V 192
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2001_192_6_a3/
%G en
%F SM_2001_192_6_a3
K. G. Malyutin. Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 843-861. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a3/

[1] Rubel L. A., Taylor B. A., “Fourier series method for meromorphic and entire functions”, Bull. Soc. Math. France, 96 (1968), 53–96 | Zbl

[2] Miles J. B., “Quotient representations of meromorphic functions”, J. Anal. Math., 25 (1972), 371–388 | DOI | MR | Zbl

[3] Kondratyuk A. A., “Metod ryadov Fure dlya tselykh i meromorfnykh funktsii vpolne regulyarnogo rosta, I”, Matem. sb., 106(148):3 (1978), 386–408 | MR | Zbl

[4] Kondratyuk A. A., “Metod ryadov Fure dlya tselykh i meromorfnykh funktsii vpolne regulyarnogo rosta, II”, Matem. sb., 113(155):1 (1980), 118–132 | MR | Zbl

[5] Kondratyuk A. A., “Metod ryadov Fure dlya tselykh i meromorfnykh funktsii vpolne regulyarnogo rosta, III”, Matem. sb., 120(162):3 (1983), 331–343 | MR | Zbl

[6] Grishin A. F., “Nepreryvnost i asimptoticheskaya nepreryvnost subgarmonicheskikh funktsii”, Matem. fizika, analiz, geometriya, 1:2 (1994), 193–215 | MR | Zbl

[7] Fedorov M. A., Grishin A. F., “Some questions of the Nevanlinna theory for the complex half-plane”, Math. Physics, Analysis and Geometry, 1:3 (1998), 223–271 | MR | Zbl

[8] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[9] Malyutin K. G., “Ryady Fure i $\delta$-subgarmonicheskie funktsii”, Trudy IPMM NAN Ukrainy, 3 (1988), 146–157 | MR

[10] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[11] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[12] Edvards R., Ryady Fure v sovremennom izlozhenii, T. 1, Mir, M., 1985

[13] Edvards R., Ryady Fure v sovremennom izlozhenii, T. 2, Mir, M., 1985

[14] Ronkin L. I., “Regulyarnost rosta i $D'$-asimptotika golomorfnykh funktsii v $\mathbb C^+$”, Izv. vuzov. Ser. matem., 1990, no. 2, 16–28 | MR

[15] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986 | MR | Zbl