Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a~half-plane
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 843-861
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\gamma(r)$ be a growth function and let $v(z)$ be a proper $\delta$-subharmonic function in the sense of Grishin in a complex half-plane, that is $v=v_1-v_2$, where $v_1$ and $v_2$ are proper subharmonic functions $(\lim\sup_{z\to t}v_i(z)\leqslant0$, for each real $t$, $i=1,2)$, let $\lambda=\lambda_+-\lambda_-$ be the full measure corresponding to $v$ and let $T(r,v)$ be its Nevanlinna characteristic. The class $J\delta(\gamma)$ of functions of finite  $\gamma$-type is defined as follows: $v\in J\delta(\gamma)$ if $T(r,v)\leqslant A\gamma(Br)/r$ for some positive constants $A$ and $B$. The Fourier coefficients of $v$ are defined in the standard way: 
$$
c_k(r,v)=\frac 2\pi\int_0^\pi v(re^{i\theta})\sin k\theta\,d\theta, \qquad r>0, \quad k\in\mathbb N.
$$ The central result of the paper is the equivalence of the following properties:
(1) $v\in J\delta(\gamma)$;
(2) $N(r)\leqslant A_1\gamma(B_1r)/r$,
where $N(r)=N(r,\lambda_+)$ or $N(r)=N(r,\lambda_-)$, and $|c_k(r,v)|\leqslant A_2\gamma(B_2r)$. It is proved in addition that $J\delta(\gamma)=JS(\gamma)-JS(\gamma)$, where $JS(\gamma)$ is the class of proper subharmonic functions of finite $\gamma$-type.
			
            
            
            
          
        
      @article{SM_2001_192_6_a3,
     author = {K. G. Malyutin},
     title = {Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a~half-plane},
     journal = {Sbornik. Mathematics},
     pages = {843--861},
     publisher = {mathdoc},
     volume = {192},
     number = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a3/}
}
                      
                      
                    K. G. Malyutin. Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a~half-plane. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 843-861. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a3/
