Differential calculus on the space of Steiner minimal trees in Riemannian manifolds
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 823-841
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that the length of a minimal spanning tree, the length of a Steiner minimal tree, and the Steiner ratio regarded as functions of finite subsets of a connected complete Riemannian manifold have directional derivatives in all directions. The derivatives
of these functions are calculated and some properties of their critical points are found. In particular, a geometric criterion for a finite set to be critical for the Steiner ratio is found. This criterion imposes  essential restrictions on the geometry of the sets for which the Steiner ratio attains its minimum, that is, the sets on which the Steiner ratio of the boundary set is equal to the Steiner ratio of the ambient space.
			
            
            
            
          
        
      @article{SM_2001_192_6_a2,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Differential calculus on the space of {Steiner} minimal trees in {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {823--841},
     publisher = {mathdoc},
     volume = {192},
     number = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a2/}
}
                      
                      
                    TY - JOUR AU - A. O. Ivanov AU - A. A. Tuzhilin TI - Differential calculus on the space of Steiner minimal trees in Riemannian manifolds JO - Sbornik. Mathematics PY - 2001 SP - 823 EP - 841 VL - 192 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_6_a2/ LA - en ID - SM_2001_192_6_a2 ER -
A. O. Ivanov; A. A. Tuzhilin. Differential calculus on the space of Steiner minimal trees in Riemannian manifolds. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 823-841. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a2/
