Differential calculus on the space of Steiner minimal trees in Riemannian manifolds
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 823-841

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the length of a minimal spanning tree, the length of a Steiner minimal tree, and the Steiner ratio regarded as functions of finite subsets of a connected complete Riemannian manifold have directional derivatives in all directions. The derivatives of these functions are calculated and some properties of their critical points are found. In particular, a geometric criterion for a finite set to be critical for the Steiner ratio is found. This criterion imposes essential restrictions on the geometry of the sets for which the Steiner ratio attains its minimum, that is, the sets on which the Steiner ratio of the boundary set is equal to the Steiner ratio of the ambient space.
@article{SM_2001_192_6_a2,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Differential calculus on the space of {Steiner} minimal trees in {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {823--841},
     publisher = {mathdoc},
     volume = {192},
     number = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a2/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Differential calculus on the space of Steiner minimal trees in Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 823
EP  - 841
VL  - 192
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_6_a2/
LA  - en
ID  - SM_2001_192_6_a2
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Differential calculus on the space of Steiner minimal trees in Riemannian manifolds
%J Sbornik. Mathematics
%D 2001
%P 823-841
%V 192
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_6_a2/
%G en
%F SM_2001_192_6_a2
A. O. Ivanov; A. A. Tuzhilin. Differential calculus on the space of Steiner minimal trees in Riemannian manifolds. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 823-841. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a2/