Differential calculus on the space of Steiner minimal trees in Riemannian manifolds
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 823-841 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the length of a minimal spanning tree, the length of a Steiner minimal tree, and the Steiner ratio regarded as functions of finite subsets of a connected complete Riemannian manifold have directional derivatives in all directions. The derivatives of these functions are calculated and some properties of their critical points are found. In particular, a geometric criterion for a finite set to be critical for the Steiner ratio is found. This criterion imposes essential restrictions on the geometry of the sets for which the Steiner ratio attains its minimum, that is, the sets on which the Steiner ratio of the boundary set is equal to the Steiner ratio of the ambient space.
@article{SM_2001_192_6_a2,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Differential calculus on the space of {Steiner} minimal trees in {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {823--841},
     year = {2001},
     volume = {192},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a2/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Differential calculus on the space of Steiner minimal trees in Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 823
EP  - 841
VL  - 192
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_6_a2/
LA  - en
ID  - SM_2001_192_6_a2
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Differential calculus on the space of Steiner minimal trees in Riemannian manifolds
%J Sbornik. Mathematics
%D 2001
%P 823-841
%V 192
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2001_192_6_a2/
%G en
%F SM_2001_192_6_a2
A. O. Ivanov; A. A. Tuzhilin. Differential calculus on the space of Steiner minimal trees in Riemannian manifolds. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 823-841. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a2/

[1] Cieslik D., Steiner minimal trees, Kluwer, Dordrecht, 1998 | MR | Zbl

[2] Ivanov A. O., Tuzhilin A. A., Razvetvlennye geodezicheskie. Geometricheskaya teoriya lokalno minimalnykh setei, Rossiiskie matem. nauchn. issledovaniya, 5, Edwin Mellen Press, Lewiston, 1999

[3] Garey M. R., Graham R. L., Johnson D. S., “Some $NP$-complete geometric problems”, Proc. 8th ann. ACM Symp. Theor. Comput. (Hershey, 1976), 1976, 10–22 | MR | Zbl

[4] Ivanov A. O., Tuzhilin A. A., Branching solutions of one-dimensional variational problems, World Scientific, Singapore, 2001 | MR

[5] Hwang F. K., Weng J. F., “The shortest network under a given topology”, J. Algorithms, 13:3 (1992), 468–488 | DOI | MR | Zbl

[6] Rubinstein J. H., Thomas D. A., “A variational approach to the Steiner network problem”, Ann. Oper. Res., 33 (1991), 481–499 | DOI | MR | Zbl

[7] Thomas D. A., Rubinstein J. H., Cole T., The Steiner minimal network for convex configuration, Preprint No 15, The Univ. of Melbourne, 1991 | MR

[8] Du D. Z., Hwang F. K., A proof of Gilbert–Pollak's conjecture on the Steiner ratio, DIMACS Technical Report, 1990

[9] Du D. Z., Hwang F. K., “An approach for proving lower bounds: solution of Gilbert–Pollak's conjecture on the Steiner ratio”, Proc. of the 31st Annual Symp. on Found. of Comp. Science, 1990

[10] Rubinstein J. H., Weng J. F., “Compression theorems and Steiner ratios on spheres”, J. Combin. Optimization, 1 (1997), 67–78 | DOI | MR | Zbl

[11] Ivanov A. O., Tuzhilin A. A., Tsislik D., “Otnoshenie Shteinera dlya rimanovykh mnogoobrazii”, Matem. zametki (to appear)

[12] Ivanov A. O., Tuzhilin A. A., Tsislik D., “Otnoshenie Shteinera dlya rimanovykh mnogoobrazii”, UMN, 55:6 (2000), 139–140 | MR | Zbl

[13] Aigner M., Kombinatornaya teoriya, Mir, M., 1982 | MR

[14] Ivanov A. O., Tuzhilin A. A., Minimal networks. The Steiner problem and its generalizations, CRC Press, Boca Raton, FL, 1994 | MR | Zbl

[15] Jarnik V., Kössler M., “O minimalnich grafeth obeahujicich n danijch bodu”, Cas. Pest. Mat. a Fys., 63 (1934), 223–235 | Zbl

[16] Du D. Z., Hwang F. K., Weng J. F., “Steiner minimal trees for regular polygons”, Discrete Comput. Geom., 2 (1987), 65–84 | DOI | MR | Zbl