The dynamics of monotone maps of dendrites
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 807-821
Voir la notice de l'article provenant de la source Math-Net.Ru
Monotone maps of dendrites with a countable closed set of branch points of finite order are studied. The structure of $\omega$-limit sets and of periodic and non-wandering sets is established, and it is proved that the topological entropy of monotone maps is equal to zero. It is shown that monotone maps of dendrites with a non-closed set of branch points of finite order may have properties different from those of the maps considered here.
@article{SM_2001_192_6_a1,
author = {L. S. Efremova and E. N. Makhrova},
title = {The dynamics of monotone maps of dendrites},
journal = {Sbornik. Mathematics},
pages = {807--821},
publisher = {mathdoc},
volume = {192},
number = {6},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a1/}
}
L. S. Efremova; E. N. Makhrova. The dynamics of monotone maps of dendrites. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 807-821. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a1/