The dynamics of monotone maps of dendrites
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 807-821 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Monotone maps of dendrites with a countable closed set of branch points of finite order are studied. The structure of $\omega$-limit sets and of periodic and non-wandering sets is established, and it is proved that the topological entropy of monotone maps is equal to zero. It is shown that monotone maps of dendrites with a non-closed set of branch points of finite order may have properties different from those of the maps considered here.
@article{SM_2001_192_6_a1,
     author = {L. S. Efremova and E. N. Makhrova},
     title = {The dynamics of monotone maps of dendrites},
     journal = {Sbornik. Mathematics},
     pages = {807--821},
     year = {2001},
     volume = {192},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a1/}
}
TY  - JOUR
AU  - L. S. Efremova
AU  - E. N. Makhrova
TI  - The dynamics of monotone maps of dendrites
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 807
EP  - 821
VL  - 192
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_6_a1/
LA  - en
ID  - SM_2001_192_6_a1
ER  - 
%0 Journal Article
%A L. S. Efremova
%A E. N. Makhrova
%T The dynamics of monotone maps of dendrites
%J Sbornik. Mathematics
%D 2001
%P 807-821
%V 192
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2001_192_6_a1/
%G en
%F SM_2001_192_6_a1
L. S. Efremova; E. N. Makhrova. The dynamics of monotone maps of dendrites. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 807-821. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a1/

[1] Ayres W., “Some generalizations of the Scherrer fixed point theorem”, Fund. Math., 16 (1930), 332–336 | Zbl

[2] Li Sh., Ye X., “Topological entropy for finite invariant subsets of $Y$”, Trans. Amer. Math. Soc., 347:12 (1995), 4651–4661 | DOI | MR | Zbl

[3] Kato H., “A note on periodic points and reccurent points of maps of dendrites”, Bull. Austral. Math. Soc., 51:3 (1995), 459–461 | DOI | MR | Zbl

[4] Kato H., “The depth of centres of maps on dendrites”, J. Austral. Math. Soc. Ser. A, 64 (1998), 44–53 | DOI | MR | Zbl

[5] Voinova M. I., Efremova L. S., “O dinamike prosteishikh otobrazhenii dendritov”, Matem. zametki, 63:2 (1998), 183–195 | MR | Zbl

[6] Efremova L. S., Makhrova E. N., “O dinamike monotonnykh otobrazhenii $n$-oda”, Izv. vuzov. Ser. matem., 1997, no. 10, 31–36 | MR | Zbl

[7] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969 | MR

[8] Levin M., “Hyperspaces and open monotone maps of hereditarily indecomposable continua”, Proc. Amer. Math. Soc., 125:2 (1997), 603–609 | DOI | MR | Zbl

[9] Smith Hal L., Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Amer. Math. Soc., Providence, RI, 1995 | MR

[10] Birkgof Dzh. D., Dinamicheskie sistemy, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999 | Zbl

[11] Alseda L., Ye X., “No division and the set of periods for tree maps”, Ergodic Theory Dynam. Systems, 15:2 (1995), 221–237 | DOI | MR | Zbl

[12] Llibre J., Misiurewicz M., “Horseshoes, entropy and periods for graph maps”, Topology, 32 (1993), 649–664 | DOI | MR | Zbl

[13] Blokh A. M., “Periods implying almost all periods, trees with snowflakes and zero entropy maps”, Nonlinearity, 5 (1992), 1375–1382 | DOI | MR | Zbl

[14] Efremova L. C., Makhrova E. N., “On the structure and dynamics of the finite trees monotonic mappings”, Proc. 3th Internat. Conf. “Differential Equations and Applications”, Saransk, 1998, 134–135

[15] Efremova L. S., Makhrova E. N., “On dynamics of monotone mappings of dendrites”, Proc. Internat Conf. dedicated to the 90th anniversary of L. S. Pontryagin, Moscow, 1998, 31–32 | MR