Identities of nearly triangular matrices
Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 795-806 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Algebras of nearly triangular matrices over a field are studied. For an infinite field, a basis of the ideal of identities is found. For a field of characteristic zero, the growth of identities is investigated.
@article{SM_2001_192_6_a0,
     author = {A. \`E. Guterman},
     title = {Identities of nearly triangular matrices},
     journal = {Sbornik. Mathematics},
     pages = {795--806},
     year = {2001},
     volume = {192},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_6_a0/}
}
TY  - JOUR
AU  - A. È. Guterman
TI  - Identities of nearly triangular matrices
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 795
EP  - 806
VL  - 192
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_6_a0/
LA  - en
ID  - SM_2001_192_6_a0
ER  - 
%0 Journal Article
%A A. È. Guterman
%T Identities of nearly triangular matrices
%J Sbornik. Mathematics
%D 2001
%P 795-806
%V 192
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2001_192_6_a0/
%G en
%F SM_2001_192_6_a0
A. È. Guterman. Identities of nearly triangular matrices. Sbornik. Mathematics, Tome 192 (2001) no. 6, pp. 795-806. http://geodesic.mathdoc.fr/item/SM_2001_192_6_a0/

[1] Maltsev Yu. N., “Bazis tozhdestv algebry verkhnikh treugolnykh matrits”, Algebra i logika, 10:4 (1971), 393–400 | MR | Zbl

[2] Siderov P. N., “Bazis tozhdestv algebry treugolnykh matrits nad proizvolnym polem”, B'lg. mat. stud., 2, Pliska, 1981, 143–152 | MR | Zbl

[3] Kalyulaid U., “Arifmetika mnogoobrazii predstavlenii polugrupp i algebr”, UMN, 32:4 (1977), 253–254 | MR | Zbl

[4] Polin S. V., “Tozhdestva algebry treugolnykh matrits”, Sib. matem. zhurn., 21:4 (1980), 206–215 | MR | Zbl

[5] Vovsi S. M., Triangular products of group representations and their applications, Progress in Mathematics, 17, Birkhäuser, Boston, 1981 | MR | Zbl

[6] Drensky V., Regev A., “Exact asymptotic behaviour of the codimensions of some P.I. algebras”, Israel J. Math., 96 (1996), 231–242 | DOI | MR | Zbl

[7] Volichenko I. B., “Ob odnom mnogoobrazii lievskikh algebr, kotoroe svyazano so standartnymi tozhdestvami. I; II”, Vesti AN VSSR. Ser. fiz.-matem. nauk, 1 (1980), 23–30 | MR | Zbl

[8] Bahturin Y., Mishchenko S., Regev A., “On the Lie and associative codimension growth”, Comm. Algebra, 27:10 (1999), 4901–4908 | DOI | MR | Zbl

[9] Regev A., Guterman A., “On the growth of identities”, Proc. Internat. Conf. in Memory of A. G. Kurosh, Walter de Gruyter, Berlin, 2000, 319–330 | MR | Zbl

[10] Giambruno A., Zaicev M., “Minimal varietes of algebras of exponential growth”, Electronic Research Announcements of the AMS, 6 (2000), 40–44 | DOI | MR | Zbl

[11] Lewin J., “A matrix representation for associative algebras, I”, Trans. Amer. Math. Soc., 188 (1974), 293–308 | DOI | MR | Zbl

[12] Drensky V., “Gelfand–Kirillov dimension of PI-algebras, methods in ring theory”, Lect. Notes Pure Appl. Math., 198, 1998, 17–24 | MR

[13] Berele A., Regev A., “Codimensions of products and of intersections of verbally prime $T$-ideals”, Israel J. Math., 103 (1998), 17–28 | DOI | MR | Zbl

[14] Olsson J., Regev A., “Colength sequence of some $T$-ideals”, J. Algebra, 38:1 (1976), 100–111 | DOI | MR | Zbl

[15] Drensky V., Free algebras and PI-algebras. Graduate course in algebra, Springer-Verlag, Singapore, 2000 | MR

[16] Drensky V., “Codimensions of $T$-ideals and Hilbert series of relatively free algebras”, J. Algebra, 91 (1984), 1–17 | DOI | MR | Zbl

[17] Specht W., “Gesetze in Ringen, I”, Math. Z. B, 52:5 (1950), 557–589 | DOI | MR | Zbl