A Fano 3-fold with a unique elliptic structure
Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 785-794 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An example of a Fano 3-fold that has a unique representation as an elliptic fibration is presented. No other examples of rationally connected varieties with such a property are known so far.
@article{SM_2001_192_5_a6,
     author = {I. A. Cheltsov},
     title = {A~Fano 3-fold with a~unique elliptic structure},
     journal = {Sbornik. Mathematics},
     pages = {785--794},
     year = {2001},
     volume = {192},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_5_a6/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - A Fano 3-fold with a unique elliptic structure
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 785
EP  - 794
VL  - 192
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_5_a6/
LA  - en
ID  - SM_2001_192_5_a6
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T A Fano 3-fold with a unique elliptic structure
%J Sbornik. Mathematics
%D 2001
%P 785-794
%V 192
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2001_192_5_a6/
%G en
%F SM_2001_192_5_a6
I. A. Cheltsov. A Fano 3-fold with a unique elliptic structure. Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 785-794. http://geodesic.mathdoc.fr/item/SM_2001_192_5_a6/

[1] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Adv. Stud. Pure Math., 10 (1987), 283–360 | MR | Zbl

[2] Pukhlikov A. V., “Birational automorphisms of a double spaces with singularities”, J. Math. Sci., 85 (1997), 2128–2141 | DOI | MR | Zbl

[3] Shokurov V. V., “$3$-fold log models”, J. Math. Sci., 81 (1996), 2667–2699 | DOI | MR | Zbl

[4] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. matem., 56:1 (1992), 105–201 | MR | Zbl

[5] Corti A., “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of 3-folds, Lond. Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl