A Fano 3-fold with a unique elliptic structure
Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 785-794
Cet article a éte moissonné depuis la source Math-Net.Ru
An example of a Fano 3-fold that has a unique representation as an elliptic fibration is presented. No other examples of rationally connected varieties with such a property are known so far.
@article{SM_2001_192_5_a6,
author = {I. A. Cheltsov},
title = {A~Fano 3-fold with a~unique elliptic structure},
journal = {Sbornik. Mathematics},
pages = {785--794},
year = {2001},
volume = {192},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_5_a6/}
}
I. A. Cheltsov. A Fano 3-fold with a unique elliptic structure. Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 785-794. http://geodesic.mathdoc.fr/item/SM_2001_192_5_a6/
[1] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Adv. Stud. Pure Math., 10 (1987), 283–360 | MR | Zbl
[2] Pukhlikov A. V., “Birational automorphisms of a double spaces with singularities”, J. Math. Sci., 85 (1997), 2128–2141 | DOI | MR | Zbl
[3] Shokurov V. V., “$3$-fold log models”, J. Math. Sci., 81 (1996), 2667–2699 | DOI | MR | Zbl
[4] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. matem., 56:1 (1992), 105–201 | MR | Zbl
[5] Corti A., “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of 3-folds, Lond. Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl