Optimal programmed controls: existence and approximation
Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 763-783

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of an optimal programmed control is proved for a Mayer problem with random parameters under sufficiently general conditions on a dynamical system. For obtaining suboptimal controls a method is considered that uses discretization of the distribution of the random parameters. It is shown that the results can be extended to problems with distributed parameters.
@article{SM_2001_192_5_a5,
     author = {D. A. Khrychev},
     title = {Optimal programmed controls: existence and approximation},
     journal = {Sbornik. Mathematics},
     pages = {763--783},
     publisher = {mathdoc},
     volume = {192},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_5_a5/}
}
TY  - JOUR
AU  - D. A. Khrychev
TI  - Optimal programmed controls: existence and approximation
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 763
EP  - 783
VL  - 192
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_5_a5/
LA  - en
ID  - SM_2001_192_5_a5
ER  - 
%0 Journal Article
%A D. A. Khrychev
%T Optimal programmed controls: existence and approximation
%J Sbornik. Mathematics
%D 2001
%P 763-783
%V 192
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_5_a5/
%G en
%F SM_2001_192_5_a5
D. A. Khrychev. Optimal programmed controls: existence and approximation. Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 763-783. http://geodesic.mathdoc.fr/item/SM_2001_192_5_a5/