Optimal programmed controls: existence and approximation
Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 763-783 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of an optimal programmed control is proved for a Mayer problem with random parameters under sufficiently general conditions on a dynamical system. For obtaining suboptimal controls a method is considered that uses discretization of the distribution of the random parameters. It is shown that the results can be extended to problems with distributed parameters.
@article{SM_2001_192_5_a5,
     author = {D. A. Khrychev},
     title = {Optimal programmed controls: existence and approximation},
     journal = {Sbornik. Mathematics},
     pages = {763--783},
     year = {2001},
     volume = {192},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_5_a5/}
}
TY  - JOUR
AU  - D. A. Khrychev
TI  - Optimal programmed controls: existence and approximation
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 763
EP  - 783
VL  - 192
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_5_a5/
LA  - en
ID  - SM_2001_192_5_a5
ER  - 
%0 Journal Article
%A D. A. Khrychev
%T Optimal programmed controls: existence and approximation
%J Sbornik. Mathematics
%D 2001
%P 763-783
%V 192
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2001_192_5_a5/
%G en
%F SM_2001_192_5_a5
D. A. Khrychev. Optimal programmed controls: existence and approximation. Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 763-783. http://geodesic.mathdoc.fr/item/SM_2001_192_5_a5/

[1] Filippov A. F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. MGU. Ser. 1. Matem., mekh., astron., 1959, no. 2, 25–32 | MR | Zbl

[2] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[3] Dokuchaev N. G., Yakubovich V. A., “Printsip maksimuma dlya stokhasticheskikh differentsialnykh uravnenii s determinirovannym upravleniem”, Kibernetika i vychislitelnaya tekhnika, no. 54, Naukova dumka, Kiev, 1982, 72–78 | MR

[4] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[5] Vishik M. I., Fursikov A. V., Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR

[6] Khrychev D. A., “Ob odnom stokhasticheskom kvazilineinom giperbolicheskom uravnenii”, Matem. sb., 116:3 (1981), 398–426 | MR | Zbl

[7] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[8] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[9] Donchev A., Sistemy optimalnogo upravleniya, Mir, M., 1987 | MR | Zbl

[10] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[11] Vishik M. I., Komech A. I., “O razreshimosti zadachi Koshi dlya uravneniya Khopfa, sootvetstvuyuschego nelineinomu giperbolicheskomu uravneniyu”, Trudy sem. im. I. G. Petrovskogo, 3, Izd-vo MGU, M., 1981, 19–42 | MR