On braid groups
Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 693-703

Voir la notice de l'article provenant de la source Math-Net.Ru

Artin's braid groups are studied from the viewpoint of right-ordered groups. A right order is constructed such that the cone of elements $\geqslant 1$ is finitely generated as a monoid. The structure of ideals of this cone is determined, and it turns out to be quite specific and impossible for linearly ordered groups. It is also proved that no linear order on the pure braid subgroup can be extended to a right order on the whole of the braid group.
@article{SM_2001_192_5_a2,
     author = {T. V. Dubrovina and N. I. Dubrovin},
     title = {On braid groups},
     journal = {Sbornik. Mathematics},
     pages = {693--703},
     publisher = {mathdoc},
     volume = {192},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_5_a2/}
}
TY  - JOUR
AU  - T. V. Dubrovina
AU  - N. I. Dubrovin
TI  - On braid groups
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 693
EP  - 703
VL  - 192
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_5_a2/
LA  - en
ID  - SM_2001_192_5_a2
ER  - 
%0 Journal Article
%A T. V. Dubrovina
%A N. I. Dubrovin
%T On braid groups
%J Sbornik. Mathematics
%D 2001
%P 693-703
%V 192
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_5_a2/
%G en
%F SM_2001_192_5_a2
T. V. Dubrovina; N. I. Dubrovin. On braid groups. Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 693-703. http://geodesic.mathdoc.fr/item/SM_2001_192_5_a2/