On braid groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 693-703
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Artin's braid groups are studied from the viewpoint of right-ordered groups. A right order is constructed such that the cone of elements $\geqslant 1$ is finitely generated as a monoid. The structure of ideals of this cone is determined, and it turns out to be quite specific and impossible for linearly ordered groups. It is also proved that no linear order on the pure braid subgroup can be extended to a right order on the whole of the braid group.
			
            
            
            
          
        
      @article{SM_2001_192_5_a2,
     author = {T. V. Dubrovina and N. I. Dubrovin},
     title = {On braid groups},
     journal = {Sbornik. Mathematics},
     pages = {693--703},
     publisher = {mathdoc},
     volume = {192},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_5_a2/}
}
                      
                      
                    T. V. Dubrovina; N. I. Dubrovin. On braid groups. Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 693-703. http://geodesic.mathdoc.fr/item/SM_2001_192_5_a2/
