Global influence domains of stable solutions with internal layers
Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 651-691 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The initial-boundary-value problem is considered for a non-stationary equation of reaction-diffusion type with non-linearity having two stable zeros. The conditions imposed ensure the existence of a stable stationary solution with internal transition layer (a stable step-like contrast structure). The question of which initial functions belong to the influence domain of such a solution is studied.
@article{SM_2001_192_5_a1,
     author = {V. F. Butuzov and I. V. Nedelko},
     title = {Global influence domains of stable solutions with internal layers},
     journal = {Sbornik. Mathematics},
     pages = {651--691},
     year = {2001},
     volume = {192},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_5_a1/}
}
TY  - JOUR
AU  - V. F. Butuzov
AU  - I. V. Nedelko
TI  - Global influence domains of stable solutions with internal layers
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 651
EP  - 691
VL  - 192
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_5_a1/
LA  - en
ID  - SM_2001_192_5_a1
ER  - 
%0 Journal Article
%A V. F. Butuzov
%A I. V. Nedelko
%T Global influence domains of stable solutions with internal layers
%J Sbornik. Mathematics
%D 2001
%P 651-691
%V 192
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2001_192_5_a1/
%G en
%F SM_2001_192_5_a1
V. F. Butuzov; I. V. Nedelko. Global influence domains of stable solutions with internal layers. Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 651-691. http://geodesic.mathdoc.fr/item/SM_2001_192_5_a1/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | Zbl

[2] Vasileva A. B., “Ob ustoichivosti kontrastnykh struktur”, Matem. modelirovanie, 3:4 (1991), 114–123 | MR

[3] Vasileva A. B., Nikitin A. G., “Asimptoticheskii metod issledovaniya kontrastnykh struktur i ego prilozheniya k teorii gidromagnitnogo dinamo”, Matem. modelirovanie, 7:2 (1995), 61–71 | MR | Zbl

[4] Angenent S., Mallet-Paret J., Peletier L., “Stable transition layers in a semilinear boundary value problems”, J. Differential Equations, 67:2 (1987), 212–242 | DOI | MR | Zbl

[5] Hale J., Sakamoto K., “Existence and stability of transition layers”, Japan J. Indust. Appl. Math., 5:3 (1988), 367–405 | MR | Zbl

[6] Butuzov V. F., Nedelko I. V., “Ustoichivost kontrastnykh struktur tipa stupenki v dvumernom sluchae”, Dokl. RAN, 366:3 (1999), 295–298 | MR

[7] Butuzov V. F., Nedelko I. V., “Ob ustoichivosti mnogomernykh kontrastnykh struktur”, Matematicheskie metody i prilozheniya, Trudy shestykh matematicheskikh chtenii MGSU (25–30 yanvarya 1998 goda), MGSU, M., 1999, 1–6 | MR

[8] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[9] Vasileva A. B., Butuzova M. V., “Ob ustoichivosti statsionarnykh reshenii s pogranichnymi i vnutrennimi sloyami”, Matematicheskie metody i prilozheniya, Trudy tretikh matematicheskikh chtenii MGSU (24–29 yanvarya 1995 goda), MGSU, M., 1995, 81–86

[10] Fife P., Hsiao L., “Generation and propagation of internal layers”, Nonlinear Anal., 12:1 (1988), 19–41 | DOI | MR | Zbl

[11] Fife P., “Diffusive waves in inhomogeneous media”, Proc. Edinburgh Math. Soc. (2), 32:2 (1989), 291–315 | DOI | MR | Zbl

[12] Amann H., “Periodic solutions of semilinear parabolic equations”, Nonlinear analysis, Collection of papers in honor of Erich Rothe, Academic Press, New York, 1978, 1–29 | MR

[13] Amann H., “Existence and stability of solutions for semilinear parabolic systems and applications to some diffusion reaction equations”, Proc. Roy. Soc. Edinburgh Sect. A, 81:1 (1978), 35–47 | MR | Zbl

[14] Trenogin V. A., “Ob asimptotike resheniya pochti lineinykh parabolicheskikh uravnenii s parabolicheskim pogransloem”, UMN, 16:1 (1961), 163–169 | MR | Zbl

[15] Vasileva A. B., “Kontrastnye struktury s dvumya perekhodnymi sloyami i ikh ustoichivost”, ZhVM i MF, 32:10 (1992), 1582–1593 | MR | Zbl

[16] Gudkov V. V., Klokov Yu. A., Lepin A. Ya., Ponomarev V. D., Dvukhtochechnye kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii, Zinante, Riga, 1973 | Zbl

[17] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh singulyarno vozmuschennykh zadach v chastnykh proizvodnykh”, Differents. uravneniya, 31:4 (1995), 719–722 | MR | Zbl

[18] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. uravneniya, 31:7 (1995), 1132–1139

[19] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl