Global influence domains of stable solutions with internal layers
Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 651-691

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial-boundary-value problem is considered for a non-stationary equation of reaction-diffusion type with non-linearity having two stable zeros. The conditions imposed ensure the existence of a stable stationary solution with internal transition layer (a stable step-like contrast structure). The question of which initial functions belong to the influence domain of such a solution is studied.
@article{SM_2001_192_5_a1,
     author = {V. F. Butuzov and I. V. Nedelko},
     title = {Global influence domains of stable solutions with internal layers},
     journal = {Sbornik. Mathematics},
     pages = {651--691},
     publisher = {mathdoc},
     volume = {192},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_5_a1/}
}
TY  - JOUR
AU  - V. F. Butuzov
AU  - I. V. Nedelko
TI  - Global influence domains of stable solutions with internal layers
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 651
EP  - 691
VL  - 192
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_5_a1/
LA  - en
ID  - SM_2001_192_5_a1
ER  - 
%0 Journal Article
%A V. F. Butuzov
%A I. V. Nedelko
%T Global influence domains of stable solutions with internal layers
%J Sbornik. Mathematics
%D 2001
%P 651-691
%V 192
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_5_a1/
%G en
%F SM_2001_192_5_a1
V. F. Butuzov; I. V. Nedelko. Global influence domains of stable solutions with internal layers. Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 651-691. http://geodesic.mathdoc.fr/item/SM_2001_192_5_a1/