On the Fermat–Lagrange principle for mixed smooth convex extremal problems
Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 641-649 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A simple geometric condition that can be attached to an extremal problem of a fairly general form included in a family of problems is indicated. This is used to demonstrate that the task of formulating a uniform condition for smooth convex problems can be satisfactorily accomplished. On the other hand, the necessity of this new condition of optimality is proved under certain technical assumptions.
@article{SM_2001_192_5_a0,
     author = {J. Brinkhuis},
     title = {On the {Fermat{\textendash}Lagrange} principle for mixed smooth convex extremal problems},
     journal = {Sbornik. Mathematics},
     pages = {641--649},
     year = {2001},
     volume = {192},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_5_a0/}
}
TY  - JOUR
AU  - J. Brinkhuis
TI  - On the Fermat–Lagrange principle for mixed smooth convex extremal problems
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 641
EP  - 649
VL  - 192
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_5_a0/
LA  - en
ID  - SM_2001_192_5_a0
ER  - 
%0 Journal Article
%A J. Brinkhuis
%T On the Fermat–Lagrange principle for mixed smooth convex extremal problems
%J Sbornik. Mathematics
%D 2001
%P 641-649
%V 192
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2001_192_5_a0/
%G en
%F SM_2001_192_5_a0
J. Brinkhuis. On the Fermat–Lagrange principle for mixed smooth convex extremal problems. Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 641-649. http://geodesic.mathdoc.fr/item/SM_2001_192_5_a0/

[1] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[2] Tikhomirov V. M., Fundamental principles of the theory of extremal problems, J. Willey Sons, Chichester, 1986 | MR | Zbl

[3] Magaril-Ilyaev G. G., Tikhomirov V. M., “O neravenstvakh dlya proizvodnykh kolmogorovskogo tipa”, Matem. sb., 188:12 (1997), 73–106 | MR | Zbl

[4] Ioffe A. D., “Euler–Lagrange and Hamiltonian formalisms in dynamic optimization”, Trans. Amer. Math. Soc., 349:7 (1997), 2871–2900 | DOI | MR | Zbl

[5] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[6] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl

[7] Rockafellar R. T., “Equivalent subgradient versions of Hamiltonian and Euler–Lagrange equations in variational analysis”, SIAM J. Control Optim., 34:4 (1996), 1300–1314 | DOI | MR | Zbl

[8] Brinkhuis J., Vertical halfspaces as solutions of dual extremal problems, report 9540/B, 1005, Econometric Institute Rotterdam

[9] Brinkhuis J., “Extremal problems and inclusion of perturbations in halfspaces”, Pure Math. Appl., 10:2 (1999), 183–196 | MR | Zbl

[10] Brinkhuis J., On a geometrical construction on the multiplier rule, report 9721/B, Econometric Institute Rotterdam

[11] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR