@article{SM_2001_192_5_a0,
author = {J. Brinkhuis},
title = {On the {Fermat{\textendash}Lagrange} principle for mixed smooth convex extremal problems},
journal = {Sbornik. Mathematics},
pages = {641--649},
year = {2001},
volume = {192},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_5_a0/}
}
J. Brinkhuis. On the Fermat–Lagrange principle for mixed smooth convex extremal problems. Sbornik. Mathematics, Tome 192 (2001) no. 5, pp. 641-649. http://geodesic.mathdoc.fr/item/SM_2001_192_5_a0/
[1] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[2] Tikhomirov V. M., Fundamental principles of the theory of extremal problems, J. Willey Sons, Chichester, 1986 | MR | Zbl
[3] Magaril-Ilyaev G. G., Tikhomirov V. M., “O neravenstvakh dlya proizvodnykh kolmogorovskogo tipa”, Matem. sb., 188:12 (1997), 73–106 | MR | Zbl
[4] Ioffe A. D., “Euler–Lagrange and Hamiltonian formalisms in dynamic optimization”, Trans. Amer. Math. Soc., 349:7 (1997), 2871–2900 | DOI | MR | Zbl
[5] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl
[6] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl
[7] Rockafellar R. T., “Equivalent subgradient versions of Hamiltonian and Euler–Lagrange equations in variational analysis”, SIAM J. Control Optim., 34:4 (1996), 1300–1314 | DOI | MR | Zbl
[8] Brinkhuis J., Vertical halfspaces as solutions of dual extremal problems, report 9540/B, 1005, Econometric Institute Rotterdam
[9] Brinkhuis J., “Extremal problems and inclusion of perturbations in halfspaces”, Pure Math. Appl., 10:2 (1999), 183–196 | MR | Zbl
[10] Brinkhuis J., On a geometrical construction on the multiplier rule, report 9721/B, Econometric Institute Rotterdam
[11] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR