Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback
Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 593-639 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of stabilizability from the boundary $\partial\Omega$ for a parabolic equation given in a bounded domain $\Omega\in\mathbb R^n$, consists in choosing a boundary condition (a control) such that the solution of the resulting mixed boundary-value problem tends as $t\to\infty$ to a given steady-state solution at a prescribed rate $\exp(-\sigma_0t)$. Furthermore, it is required that the control be with feedback, that is, that it react to unpredictable fluctuations of the system by suppressing the results of their action on the stabilizable solution. A new mathematical formulation of the concept of feedback is presented and then used in solving the problem of stabilizability of linear as well as quasi-linear parabolic equations by means of a control with feedback defined on part of the boundary.
@article{SM_2001_192_4_a6,
     author = {A. V. Fursikov},
     title = {Stabilizability of a~quasi-linear parabolic equation by means of a~boundary control with feedback},
     journal = {Sbornik. Mathematics},
     pages = {593--639},
     year = {2001},
     volume = {192},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a6/}
}
TY  - JOUR
AU  - A. V. Fursikov
TI  - Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 593
EP  - 639
VL  - 192
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_4_a6/
LA  - en
ID  - SM_2001_192_4_a6
ER  - 
%0 Journal Article
%A A. V. Fursikov
%T Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback
%J Sbornik. Mathematics
%D 2001
%P 593-639
%V 192
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2001_192_4_a6/
%G en
%F SM_2001_192_4_a6
A. V. Fursikov. Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 593-639. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a6/

[1] Fursikov A. V., Emanuilov O. Yu., “Tochnaya upravlyaemost uravnenii Nave–Stoksa i Bussineska”, UMN, 54:3 (1999), 93–146 | MR | Zbl

[2] Lions J.-L., “Exact controllability, stabilizability, and perturbations for distributed systems”, SIAM Rev., 30 (1988), 1–68 | DOI | MR | Zbl

[3] Lagnese J. E., Boundary stabilization of thin plates, Society for Industrial and Applied Mathematics, Philadelphia, 1989 | MR | Zbl

[4] Komornik V., “Rapid boundary stabilization of linear distributed systems”, SIAM J. Control Optim., 35 (1997), 1591–1613 | DOI | MR | Zbl

[5] Coron J.-M., “On null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domains”, SIAM J. Control Optim., 37:6 (1999), 1874–1896 | DOI | MR | Zbl

[6] Balogh A., Krstic M., “Burger's equation with nonlinear boundary feedback: $H^1$-stability, well-posedness and simulation”, Math. Probl. in Engeneering, 6 (2000), 189–200 | DOI | MR | Zbl

[7] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[8] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 26:4 (1971), 15–41 | MR | Zbl

[9] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[10] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[11] Agmon Sh., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, M., 1962

[12] Agmon S., “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure Appl. Math., 15 (1962), 119–147 | DOI | MR | Zbl

[13] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl

[14] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[15] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[16] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[17] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva O. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[18] Krylov N. V., Lektsii po ellipticheskim i parabolicheskim uravneniyam v prostranstvakh Geldera, Nauchnaya kniga, Novosibirsk, 1998 | MR

[19] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[20] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[21] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR | Zbl