Structure of spectra of linear operators in Banach spaces
Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 577-591 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Descriptive characterizations of the point, the continuous, and the residual spectra of operators in Banach spaces are put forward. In particular, necessary and sufficient conditions for three disjoint subsets of the complex plane to be the point spectrum, the continuous spectrum, and the residual spectrum of a linear continuous operator in a separable Banach space are obtained.
@article{SM_2001_192_4_a5,
     author = {O. G. Smolyanov and S. A. Shkarin},
     title = {Structure of spectra of linear operators in {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {577--591},
     year = {2001},
     volume = {192},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a5/}
}
TY  - JOUR
AU  - O. G. Smolyanov
AU  - S. A. Shkarin
TI  - Structure of spectra of linear operators in Banach spaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 577
EP  - 591
VL  - 192
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_4_a5/
LA  - en
ID  - SM_2001_192_4_a5
ER  - 
%0 Journal Article
%A O. G. Smolyanov
%A S. A. Shkarin
%T Structure of spectra of linear operators in Banach spaces
%J Sbornik. Mathematics
%D 2001
%P 577-591
%V 192
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2001_192_4_a5/
%G en
%F SM_2001_192_4_a5
O. G. Smolyanov; S. A. Shkarin. Structure of spectra of linear operators in Banach spaces. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 577-591. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a5/

[1] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[2] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[3] Kalisch G. K., “On operators on separable Banach spaces with arbitrary prescribed point spectrum”, Proc. Amer. Math. Soc., 34:1 (1972), 207–208 | DOI | MR | Zbl

[4] Szökefalvi-Nagy B., “Contribution en Hongorie a la theorie spectrale les transformations”, Chechoslovak. Math. J., 6:2 (1956), 166–176 | MR | Zbl

[5] Dixmier J., Foias C., “Sur le spectre ponctuel d'un operateur”, Hilbert space operators and operator algebras, Proc. Internat. Conf. (Hungary, Tihany, 1970), Colloq. Math. Soc. Janos Bolyai, 5, North-Holland, Amsterdam, 1970, 127–133 | MR

[6] Nikolskaya L. N., “Stroenie tochechnogo spektra lineinykh operatorov”, Matem. zametki, 15:1 (1974), 149–158 | MR | Zbl

[7] Smolyanov O. G., Shkarin S. A., “O strukture spektrov lineinykh operatorov v gilbertovom prostranstve”, Izbrannye voprosy matematiki, mekhaniki i ikh prilozhenii, Izd-vo MGU, M., 1999, 289–302

[8] Kaufman R., “Lipschitz spaces and Souslin sets”, J. Funct. Anal., 42:3 (1981), 271–273 | DOI | MR | Zbl

[9] Kaufman R., “Representation of Souslin sets by operators”, Integral Equations and Operator Theory, 7:6 (1984), 808–814 | DOI | MR | Zbl

[10] Kaufman R., “On some operators on $c_0$”, Israel J. Math., 50:4 (1985), 353–356 | DOI | MR | Zbl

[11] Kuratovskii K., Obschaya topologiya, T. 1, Mir, M., 1966 | MR

[12] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl