Structure of spectra of linear operators in Banach spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 577-591
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Descriptive characterizations of the point, the continuous, and the residual spectra of operators in Banach spaces are put forward. In particular,  necessary and sufficient conditions for three  disjoint subsets of the complex plane to be the point spectrum, the continuous spectrum, and the residual spectrum of a linear continuous operator in a separable Banach
space are obtained.
			
            
            
            
          
        
      @article{SM_2001_192_4_a5,
     author = {O. G. Smolyanov and S. A. Shkarin},
     title = {Structure of spectra of linear operators in {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {577--591},
     publisher = {mathdoc},
     volume = {192},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a5/}
}
                      
                      
                    O. G. Smolyanov; S. A. Shkarin. Structure of spectra of linear operators in Banach spaces. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 577-591. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a5/
