Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis
Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 565-576
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions for the invertibility in the space of bounded continuous functions on $\mathbb R$ of the non-linear difference operator
$$
(\mathscr Dx)(t)=x(t+1)-f(x(t)), \qquad t\in\mathbb R,
$$
with $f\colon\mathbb R\to\mathbb R$ a continuous map, are obtained.
@article{SM_2001_192_4_a4,
author = {V. E. Slyusarchuk},
title = {Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis},
journal = {Sbornik. Mathematics},
pages = {565--576},
publisher = {mathdoc},
volume = {192},
number = {4},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a4/}
}
TY - JOUR AU - V. E. Slyusarchuk TI - Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis JO - Sbornik. Mathematics PY - 2001 SP - 565 EP - 576 VL - 192 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_4_a4/ LA - en ID - SM_2001_192_4_a4 ER -
%0 Journal Article %A V. E. Slyusarchuk %T Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis %J Sbornik. Mathematics %D 2001 %P 565-576 %V 192 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2001_192_4_a4/ %G en %F SM_2001_192_4_a4
V. E. Slyusarchuk. Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 565-576. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a4/