Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis
Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 565-576 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions for the invertibility in the space of bounded continuous functions on $\mathbb R$ of the non-linear difference operator $$ (\mathscr Dx)(t)=x(t+1)-f(x(t)), \qquad t\in\mathbb R, $$ with $f\colon\mathbb R\to\mathbb R$ a continuous map, are obtained.
@article{SM_2001_192_4_a4,
     author = {V. E. Slyusarchuk},
     title = {Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis},
     journal = {Sbornik. Mathematics},
     pages = {565--576},
     year = {2001},
     volume = {192},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a4/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 565
EP  - 576
VL  - 192
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_4_a4/
LA  - en
ID  - SM_2001_192_4_a4
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis
%J Sbornik. Mathematics
%D 2001
%P 565-576
%V 192
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2001_192_4_a4/
%G en
%F SM_2001_192_4_a4
V. E. Slyusarchuk. Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 565-576. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a4/

[1] Mukhamadiev E., “Ob obratimosti funktsionalnykh operatorov v prostranstve ogranichennykh na osi funktsii”, Matem. zametki, 11:3 (1972), 269–274 | MR | Zbl

[2] Mukhamadiev E., Issledovaniya po teorii periodicheskikh i ogranichennykh reshenii differentsialnykh uravnenii, Dis. $\dots$ dokt. fiz.-matem. nauk, Dushanbe, 1978

[3] Slyusarchuk V. E., “Obratimost pochti periodicheskikh $c$-nepreryvnykh funktsionalnykh operatorov”, Matem. sb., 116 (158):4 (1981), 483–501 | MR | Zbl

[4] Slyusarchuk V. E., “Integralnoe predstavlenie $c$-nepreryvnykh lineinykh operatorov”, Dokl. AN USSR. Ser. A, 1981, no. 8, 34–37 | MR

[5] Slyusarchuk V. E., “Obratimost neavtonomnykh differentsialno-funktsionalnykh operatorov”, Matem. sb., 130 (172):1 (1986), 86–104 | MR

[6] Slyusarchuk V. E., “Neobkhodimye i dostatochnye usloviya obratimosti neavtonomnykh funktsionalno-differentsialnykh operatorov”, Matem. zametki, 42:2 (1987), 262–267 | MR

[7] Slyusarchuk V. E., “Neobkhodimye i dostatochnye usloviya obratimosti ravnomerno $c$-nepreryvnykh funktsionalno-differentsialnykh operatorov”, Ukr. matem. zhurn., 41:2 (1989), 201–205 | MR | Zbl

[8] Kurbatov V. G., Lineinye differentsialno-raznostnye uravneniya, Izd-vo Voronezhskogo un-ta, Voronezh, 1990 | MR | Zbl

[9] Chan Khyu Bong, Pochti periodicheskie i ogranichennye resheniya lineinykh funktsionalno-differentsialnykh uravnenii, Dis. $\dots$ dokt. fiz.-matem. nauk, Kiev, 1993

[10] Slyusarchuk V. E., “Metod $c$-nepreryvnykh operatorov v teorii impulsnykh sistem”, Tezisy dokladov Vsesoyuznoi konferentsii po teorii i prilozheniyam funktsionalno-differentsialnykh uravnenii, Dushanbe, 1987, 102–103

[11] Slyusarchuk V. E., “Slabo nelineinye vozmuscheniya impulsnykh sistem”, Matem. fizika i nelineinaya mekh., 1991, no. 15 (49), 32–35 | MR

[12] Khalanai A., Veksler D., Kachestvennaya teoriya impulsnykh sistem, Mir, M., 1971 | MR

[13] Martynyuk D. I., Lektsii po kachestvennoi teorii raznostnykh uravnenii, Naukova dumka, Kiev, 1972 | MR

[14] Dorogovtsev A. Ya., Periodicheskie i statsionarnye rezhimy beskonechnomernykh determinirovannykh i stokhasticheskikh dinamicheskikh sistem, Vischa shkola, Kiev, 1992 | MR

[15] Coffman C. V., Schäffer J. J., “Dichotomies for linear difference equations”, Math. Ann., 172 (1967), 139–166 | DOI | MR | Zbl

[16] Slyusarchuk V. E., “Obratimost lineinykh neavtonomnykh raznostnykh operatorov v prostranstve ogranichennykh na $\mathbb Z$ funktsii”, Matem. zametki, 37:5 (1985), 662–666 | MR | Zbl

[17] Slyusarchuk V. E., “Slabo nelineinye vozmuscheniya normalno razreshimykh funktsionalno-differentsialnykh i diskretnykh uravnenii”, Ukr. matem. zhurn., 39:5 (1987), 660–662 | MR

[18] Baskakov A. G., “Ob obratimosti i fredgolmovosti raznostnykh operatorov”, Matem. zametki, 67:6 (2000), 816–827 | MR | Zbl

[19] Slyusarchuk V. E., “Neobkhidni i dostatni umovi oborotnosti neliniinikh riznitsevikh vidobrazhen u prostori $l_\infty({\mathbb Z},{\mathbb R})$”, Matem. studiï. Pratsi Lvivskogo matem. tovaristva, 13:1 (2000), 63–73 | MR | Zbl

[20] Trubnikov Yu. V., Perov A. I., Differentsialnye uravneniya s monotonnymi nelineinostyami, Nauka i tekhnika, Minsk, 1986 | MR | Zbl

[21] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 1, Nauka, M., 1966

[22] Postnikov M. M., Gladkie mnogoobraziya, Nauka, M., 1987 | MR | Zbl

[23] Slyusarchuk V. E., “Neobkhodimye i dostatochnye usloviya lipshitsevoi obratimosti nelineinykh raznostnykh operatorov v prostranstvakh $l_p({\mathbb Z},{\mathbb R})$, $1\le p\le\infty$”, Matem. zametki, 68:3 (2000), 448–454 | MR | Zbl