Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis
Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 565-576

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for the invertibility in the space of bounded continuous functions on $\mathbb R$ of the non-linear difference operator $$ (\mathscr Dx)(t)=x(t+1)-f(x(t)), \qquad t\in\mathbb R, $$ with $f\colon\mathbb R\to\mathbb R$ a continuous map, are obtained.
@article{SM_2001_192_4_a4,
     author = {V. E. Slyusarchuk},
     title = {Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis},
     journal = {Sbornik. Mathematics},
     pages = {565--576},
     publisher = {mathdoc},
     volume = {192},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a4/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 565
EP  - 576
VL  - 192
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_4_a4/
LA  - en
ID  - SM_2001_192_4_a4
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis
%J Sbornik. Mathematics
%D 2001
%P 565-576
%V 192
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_4_a4/
%G en
%F SM_2001_192_4_a4
V. E. Slyusarchuk. Necessary and sufficient conditions for the invertibility of the non-linear difference operator $(\mathscr Dx)(t)=x(t+1)-f(x(t))$ in the space of bounded continuous functions on the real axis. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 565-576. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a4/