Eigenvalue estimates for Hankel matrices
Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 537-550 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Positive-definite Hankel matrices have an important property: the ratio of the largest and the smallest eigenvalues (the spectral condition number) has as a lower bound an increasing exponential of the order of the matrix that is independent of the particular matrix entries. The proof of this fact is related to the so-called Vandermonde factorizations of positive-definite Hankel matrices. In this paper the structure of these factorizations is studied for real sign-indefinite strongly regular Hankel matrices. Some generalizations of the estimates of the spectral condition number are suggested.
@article{SM_2001_192_4_a2,
     author = {N. L. Zamarashkin and E. E. Tyrtyshnikov},
     title = {Eigenvalue estimates for {Hankel} matrices},
     journal = {Sbornik. Mathematics},
     pages = {537--550},
     year = {2001},
     volume = {192},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a2/}
}
TY  - JOUR
AU  - N. L. Zamarashkin
AU  - E. E. Tyrtyshnikov
TI  - Eigenvalue estimates for Hankel matrices
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 537
EP  - 550
VL  - 192
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_4_a2/
LA  - en
ID  - SM_2001_192_4_a2
ER  - 
%0 Journal Article
%A N. L. Zamarashkin
%A E. E. Tyrtyshnikov
%T Eigenvalue estimates for Hankel matrices
%J Sbornik. Mathematics
%D 2001
%P 537-550
%V 192
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2001_192_4_a2/
%G en
%F SM_2001_192_4_a2
N. L. Zamarashkin; E. E. Tyrtyshnikov. Eigenvalue estimates for Hankel matrices. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 537-550. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a2/

[1] Tyrtyshnikov E. E., “How bad are Hankel matrices?”, Numer. Math., 67 (1994), 261–269 | DOI | MR | Zbl

[2] Beckermann B., The condition number of real Vandermonde, Krylov and positive definite Hankel matrices, Preprint ANO-380, Nov. 1997, Laboratoire d'analyse numerique et d'optimisation, Lille | MR

[3] Lander F. I., “Bezutianta i obraschenie gankelevykh i teplitsevykh matrits”, Matem. issledovaniya, 1974, no. 2 (32), 69–87 | MR

[4] Heinig G., Rost K., Algebraic methods for toeplitz-like matrices and operators, Academie Verlag, Berlin, 1984 | MR

[5] Ilin V. P., Kuznetsov Yu. I., Algebraicheskie osnovy chislennogo analiza, Nauka, Novosibirsk, 1986 | MR

[6] Taylor J. M., “The condition of Gram matrices and related problems”, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 45–56 | MR | Zbl

[7] Gautschi W., Inglese G., “Lower bounds for the condition number of Vandermonde matrices”, Numer. Math., 52:3 (1988), 241–250 | DOI | MR | Zbl

[8] Stewart G. W., Sun J., Matrix perturbation theory, Academy Press, San Diego, 1990 | MR | Zbl