$C^1$-approximation and extension of subharmonic functions
Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 515-535

Voir la notice de l'article provenant de la source Math-Net.Ru

Criteria for the uniform approximability in $\mathbb R^N$, $N\geqslant 2$, of the gradients of $C^1$-subharmonic functions by the gradients of similar functions that are harmonic in neighbourhoods of a fixed compact set are obtained. The semiadditivity of the capacity related to the problem is proved and several metric conditions for the approximation are found. An estimate of the flux of the gradient of a subharmonic function in terms of the capacity of its “sources” and a theorem on the possibility of a $C^1$-extension of a subharmonic function in a ball to a subharmonic function on the whole of $\mathbb R^N$ are established.
@article{SM_2001_192_4_a1,
     author = {J. Verdera and M. S. Mel'nikov and P. V. Paramonov},
     title = {$C^1$-approximation and extension of subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {515--535},
     publisher = {mathdoc},
     volume = {192},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/}
}
TY  - JOUR
AU  - J. Verdera
AU  - M. S. Mel'nikov
AU  - P. V. Paramonov
TI  - $C^1$-approximation and extension of subharmonic functions
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 515
EP  - 535
VL  - 192
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/
LA  - en
ID  - SM_2001_192_4_a1
ER  - 
%0 Journal Article
%A J. Verdera
%A M. S. Mel'nikov
%A P. V. Paramonov
%T $C^1$-approximation and extension of subharmonic functions
%J Sbornik. Mathematics
%D 2001
%P 515-535
%V 192
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/
%G en
%F SM_2001_192_4_a1
J. Verdera; M. S. Mel'nikov; P. V. Paramonov. $C^1$-approximation and extension of subharmonic functions. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 515-535. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/