$C^1$-approximation and extension of subharmonic functions
Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 515-535 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Criteria for the uniform approximability in $\mathbb R^N$, $N\geqslant 2$, of the gradients of $C^1$-subharmonic functions by the gradients of similar functions that are harmonic in neighbourhoods of a fixed compact set are obtained. The semiadditivity of the capacity related to the problem is proved and several metric conditions for the approximation are found. An estimate of the flux of the gradient of a subharmonic function in terms of the capacity of its “sources” and a theorem on the possibility of a $C^1$-extension of a subharmonic function in a ball to a subharmonic function on the whole of $\mathbb R^N$ are established.
@article{SM_2001_192_4_a1,
     author = {J. Verdera and M. S. Mel'nikov and P. V. Paramonov},
     title = {$C^1$-approximation and extension of subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {515--535},
     year = {2001},
     volume = {192},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/}
}
TY  - JOUR
AU  - J. Verdera
AU  - M. S. Mel'nikov
AU  - P. V. Paramonov
TI  - $C^1$-approximation and extension of subharmonic functions
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 515
EP  - 535
VL  - 192
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/
LA  - en
ID  - SM_2001_192_4_a1
ER  - 
%0 Journal Article
%A J. Verdera
%A M. S. Mel'nikov
%A P. V. Paramonov
%T $C^1$-approximation and extension of subharmonic functions
%J Sbornik. Mathematics
%D 2001
%P 515-535
%V 192
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/
%G en
%F SM_2001_192_4_a1
J. Verdera; M. S. Mel'nikov; P. V. Paramonov. $C^1$-approximation and extension of subharmonic functions. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 515-535. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/

[1] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR

[2] Verdera J., “On $C^m$ rational approximation”, Proc. Amer. Math. Soc., 97 (1986), 621–625 | DOI | MR | Zbl

[3] Verdera J., “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl

[4] Paramonov P. V., “O garmonicheskikh approksimatsiyakh v $C^1$-norme”, Matem. sb., 181:10 (1990), 1341–1365 | MR

[5] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v ${\mathbb R}^n$”, Matem. sb., 184:2 (1993), 105–128 | MR | Zbl

[6] Tolsa X., “$L^2$-boundedness of the Cauchy integral operator for continuous measures”, Duke Math. J., 98:2 (1999), 269–304 | DOI | MR | Zbl

[7] Mattila P., Paramonov P. V., “On geometric properties of harmonic $\operatorname{Lip}_1$-capacity”, Pacific J. Math., 171:2 (1995), 469–490 | MR

[8] Paramonov P. V., “Nekotorye novye kriterii ravnomernoi priblizhaemosti funktsii ratsionalnymi drobyami”, Matem. sb., 186:9 (1995), 97–112 | MR | Zbl

[9] Freeden W., “Basis systems and their role in the approximation of the Earth's gravitational field”, Gerlands Beitr. Geophysik, Leipzig, 94:1 (1985), 19–34 | MR

[10] Melnikov M. S., “Otsenka integrala Koshi po analiticheskoi krivoi”, Matem. sb., 71(113) (1966), 503–515

[11] Gardiner S. J., Harmonic approximation, Lectures Notes Ser., 221, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[12] Gauthier P. M., “Subharmonic extension and approximation”, Canadian Math. Bull., 37 (1994), 46–53 | MR | Zbl

[13] David G., Journé J. L., “A boundedness criterion for generalized Calderón–Zygmund operators”, Ann. of Math., 120 (1984), 371–397 | DOI | MR | Zbl

[14] David G., Wavelets and singular integrals on curves and surfaces, Lecture Notes in Math., 1465, Springer-Verlag, Berlin, 1991 | MR

[15] David G., Journé J. L., Semmes S., “Opérateurs de Calderón–Zygmund, fonctions para-accrétives et interpolation”, Rev. Mat. Iberoamericana, 4 (1985), 1–56 | MR | Zbl

[16] Nazarov F., Treil S., Volberg A., “Cauchy integral and Calderón–Zygmund operators on non homogeneous spaces”, Internat. Math. Res. Notices, 15 (1997), 703–726 | DOI | MR | Zbl

[17] Verdera J., “On the $T(1)$-Theorem for the Cauchy Integral”, Ark. Mat., 38 (2000), 183–199 | DOI | MR | Zbl

[18] Nazarov F., Treil S., Volberg A., “Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on non homogeneous spaces”, Internat. Math. Res. Notices, 9 (1998), 463–487 | DOI | MR | Zbl

[19] Uy N. X., “An extremal problem on singular integrals”, Amer. J. Math., 102:2 (1980), 279–290 | DOI | MR | Zbl

[20] Verdera J., “A weak type inequality for Cauchy transforms of finite measures”, Publ. Mat. UAB, 36 (1992), 1029–1034 | MR | Zbl

[21] Verdera J., “Removability, capacity and approximation”, Complex Potential Theory, NATO ASI Series, Kluwer Academic Publ., Dordrecht, 1994, 419–473 | MR | Zbl

[22] Bagby T., “Approximation in the mean by solutions of elliptic equations”, Trans. Amer. Math. Soc., 281 (1984), 761–784 | DOI | MR | Zbl

[23] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970 | MR

[24] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl

[25] Melnikov M. S., “Analiticheskaya emkost: diskretnyi podkhod i krivizna mery”, Matem. sb., 186:6 (1995), 57–76 | MR | Zbl