$C^1$-approximation and extension of subharmonic functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 515-535
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Criteria for the uniform approximability in $\mathbb R^N$, $N\geqslant 2$, of the gradients
of $C^1$-subharmonic functions by the gradients of similar functions that are harmonic in neighbourhoods of a fixed compact set are obtained. The semiadditivity of the capacity related to the problem is proved and several metric conditions for the approximation are found. An estimate of the flux of the gradient of a subharmonic function in terms of the capacity of its “sources” and a theorem on the possibility of a $C^1$-extension of a subharmonic function
in a ball to a subharmonic function on the whole of $\mathbb R^N$ are established.
			
            
            
            
          
        
      @article{SM_2001_192_4_a1,
     author = {J. Verdera and M. S. Mel'nikov and P. V. Paramonov},
     title = {$C^1$-approximation and extension of subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {515--535},
     publisher = {mathdoc},
     volume = {192},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/}
}
                      
                      
                    TY - JOUR AU - J. Verdera AU - M. S. Mel'nikov AU - P. V. Paramonov TI - $C^1$-approximation and extension of subharmonic functions JO - Sbornik. Mathematics PY - 2001 SP - 515 EP - 535 VL - 192 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/ LA - en ID - SM_2001_192_4_a1 ER -
J. Verdera; M. S. Mel'nikov; P. V. Paramonov. $C^1$-approximation and extension of subharmonic functions. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 515-535. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/
