@article{SM_2001_192_4_a1,
author = {J. Verdera and M. S. Mel'nikov and P. V. Paramonov},
title = {$C^1$-approximation and extension of subharmonic functions},
journal = {Sbornik. Mathematics},
pages = {515--535},
year = {2001},
volume = {192},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/}
}
J. Verdera; M. S. Mel'nikov; P. V. Paramonov. $C^1$-approximation and extension of subharmonic functions. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 515-535. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a1/
[1] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR
[2] Verdera J., “On $C^m$ rational approximation”, Proc. Amer. Math. Soc., 97 (1986), 621–625 | DOI | MR | Zbl
[3] Verdera J., “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl
[4] Paramonov P. V., “O garmonicheskikh approksimatsiyakh v $C^1$-norme”, Matem. sb., 181:10 (1990), 1341–1365 | MR
[5] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v ${\mathbb R}^n$”, Matem. sb., 184:2 (1993), 105–128 | MR | Zbl
[6] Tolsa X., “$L^2$-boundedness of the Cauchy integral operator for continuous measures”, Duke Math. J., 98:2 (1999), 269–304 | DOI | MR | Zbl
[7] Mattila P., Paramonov P. V., “On geometric properties of harmonic $\operatorname{Lip}_1$-capacity”, Pacific J. Math., 171:2 (1995), 469–490 | MR
[8] Paramonov P. V., “Nekotorye novye kriterii ravnomernoi priblizhaemosti funktsii ratsionalnymi drobyami”, Matem. sb., 186:9 (1995), 97–112 | MR | Zbl
[9] Freeden W., “Basis systems and their role in the approximation of the Earth's gravitational field”, Gerlands Beitr. Geophysik, Leipzig, 94:1 (1985), 19–34 | MR
[10] Melnikov M. S., “Otsenka integrala Koshi po analiticheskoi krivoi”, Matem. sb., 71(113) (1966), 503–515
[11] Gardiner S. J., Harmonic approximation, Lectures Notes Ser., 221, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[12] Gauthier P. M., “Subharmonic extension and approximation”, Canadian Math. Bull., 37 (1994), 46–53 | MR | Zbl
[13] David G., Journé J. L., “A boundedness criterion for generalized Calderón–Zygmund operators”, Ann. of Math., 120 (1984), 371–397 | DOI | MR | Zbl
[14] David G., Wavelets and singular integrals on curves and surfaces, Lecture Notes in Math., 1465, Springer-Verlag, Berlin, 1991 | MR
[15] David G., Journé J. L., Semmes S., “Opérateurs de Calderón–Zygmund, fonctions para-accrétives et interpolation”, Rev. Mat. Iberoamericana, 4 (1985), 1–56 | MR | Zbl
[16] Nazarov F., Treil S., Volberg A., “Cauchy integral and Calderón–Zygmund operators on non homogeneous spaces”, Internat. Math. Res. Notices, 15 (1997), 703–726 | DOI | MR | Zbl
[17] Verdera J., “On the $T(1)$-Theorem for the Cauchy Integral”, Ark. Mat., 38 (2000), 183–199 | DOI | MR | Zbl
[18] Nazarov F., Treil S., Volberg A., “Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on non homogeneous spaces”, Internat. Math. Res. Notices, 9 (1998), 463–487 | DOI | MR | Zbl
[19] Uy N. X., “An extremal problem on singular integrals”, Amer. J. Math., 102:2 (1980), 279–290 | DOI | MR | Zbl
[20] Verdera J., “A weak type inequality for Cauchy transforms of finite measures”, Publ. Mat. UAB, 36 (1992), 1029–1034 | MR | Zbl
[21] Verdera J., “Removability, capacity and approximation”, Complex Potential Theory, NATO ASI Series, Kluwer Academic Publ., Dordrecht, 1994, 419–473 | MR | Zbl
[22] Bagby T., “Approximation in the mean by solutions of elliptic equations”, Trans. Amer. Math. Soc., 281 (1984), 761–784 | DOI | MR | Zbl
[23] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970 | MR
[24] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl
[25] Melnikov M. S., “Analiticheskaya emkost: diskretnyi podkhod i krivizna mery”, Matem. sb., 186:6 (1995), 57–76 | MR | Zbl