PS$_3$ integral equations and projective structures on Riemann surfaces
Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 479-514

Voir la notice de l'article provenant de la source Math-Net.Ru

A complex-geometric theory of the Poincaré–Steklov integral equation is developed. Solutions of this equation are effectively represented and its spectrum is localized
@article{SM_2001_192_4_a0,
     author = {A. B. Bogatyrev},
     title = {PS$_3$ integral equations and projective structures on {Riemann} surfaces},
     journal = {Sbornik. Mathematics},
     pages = {479--514},
     publisher = {mathdoc},
     volume = {192},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a0/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - PS$_3$ integral equations and projective structures on Riemann surfaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 479
EP  - 514
VL  - 192
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_4_a0/
LA  - en
ID  - SM_2001_192_4_a0
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T PS$_3$ integral equations and projective structures on Riemann surfaces
%J Sbornik. Mathematics
%D 2001
%P 479-514
%V 192
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_4_a0/
%G en
%F SM_2001_192_4_a0
A. B. Bogatyrev. PS$_3$ integral equations and projective structures on Riemann surfaces. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 479-514. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a0/