PS$_3$ integral equations and projective structures on Riemann surfaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 479-514
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A complex-geometric theory of the Poincaré–Steklov integral equation is developed. Solutions of this equation are effectively represented and its spectrum is localized
			
            
            
            
          
        
      @article{SM_2001_192_4_a0,
     author = {A. B. Bogatyrev},
     title = {PS$_3$ integral equations and projective structures on {Riemann} surfaces},
     journal = {Sbornik. Mathematics},
     pages = {479--514},
     publisher = {mathdoc},
     volume = {192},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_4_a0/}
}
                      
                      
                    A. B. Bogatyrev. PS$_3$ integral equations and projective structures on Riemann surfaces. Sbornik. Mathematics, Tome 192 (2001) no. 4, pp. 479-514. http://geodesic.mathdoc.fr/item/SM_2001_192_4_a0/
