Orthogonal polynomial Schauder bases in $C[-1,1]$ with optimal growth of degrees
Sbornik. Mathematics, Tome 192 (2001) no. 3, pp. 433-454 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For each $\varepsilon>0$ an orthogonal Schauder basis of algebraic polynomials $P_n$ in $C[-1,1]$ is constructed such that the degrees of the polynomials have the estimate $n(1+\varepsilon)$. This growth rate is the lowest possible.
@article{SM_2001_192_3_a5,
     author = {M. A. Skopina},
     title = {Orthogonal polynomial {Schauder} bases in~$C[-1,1]$ with optimal growth of degrees},
     journal = {Sbornik. Mathematics},
     pages = {433--454},
     year = {2001},
     volume = {192},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_3_a5/}
}
TY  - JOUR
AU  - M. A. Skopina
TI  - Orthogonal polynomial Schauder bases in $C[-1,1]$ with optimal growth of degrees
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 433
EP  - 454
VL  - 192
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_3_a5/
LA  - en
ID  - SM_2001_192_3_a5
ER  - 
%0 Journal Article
%A M. A. Skopina
%T Orthogonal polynomial Schauder bases in $C[-1,1]$ with optimal growth of degrees
%J Sbornik. Mathematics
%D 2001
%P 433-454
%V 192
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2001_192_3_a5/
%G en
%F SM_2001_192_3_a5
M. A. Skopina. Orthogonal polynomial Schauder bases in $C[-1,1]$ with optimal growth of degrees. Sbornik. Mathematics, Tome 192 (2001) no. 3, pp. 433-454. http://geodesic.mathdoc.fr/item/SM_2001_192_3_a5/

[1] Ulyanov P. L., “O nekotorykh reshennykh i nereshennykh problemakh teorii ortogonalnykh ryadov”, Trudy IV Vsesoyuznogo matematicheskogo s'ezda, T. 2, Izd-vo AN SSSR, L., 1964, 694–704

[2] Ulyanov P. L., “O nekotorykh rezultatakh i zadachakh iz teorii bazisov”, Zapiski nauch. sem. LOMI, 170, Nauka, L., 1989, 274–284

[3] Faber G., “Über die interpolatorische Darstelung stetiger Functionen”, Jahresber. Deutsch. Math.-Verein, 23 (1914), 192–210 | Zbl

[4] Privalov Al. A., “O roste stepenei polinomialnykh bazisov”, Matem. zametki, 48:4 (1990), 69–78 | MR | Zbl

[5] Privalov Al. A., “O roste stepenei polinomialnykh bazisov i priblizhenii trigonometricheskikh proektorov”, Matem. zametki, 42:2 (1987), 207–214 | MR

[6] Offin D., Oskolkov K., “A note on orthonormal polynomial bases and wavelets”, Constr. Approx., 9:1 (1993), 319–325 | DOI | MR | Zbl

[7] Lorentz R. A., Sahakian A. A., “Orthogonal trigonometric Shauder bases of optimal degree for $C(0,2\pi)$”, J. Fourier Anal. Appl., 1:1 (1994), 103–112 | DOI | MR | Zbl

[8] Kilgore T., Prestin J., Selig K., “Orthogonal algebraic polynomial Shauder bases of optimal degree”, J. Fourier Anal. Appl., 2:6 (1996), 597–610 | DOI | MR | Zbl

[9] Skopina M., “Multiresolution analysis of periodic functions”, East J. Approx., 3:2 (1997), 203–224 | MR | Zbl

[10] Daubechies I., “Ten lectures on wavelets”, CBMS-NSF Regional Conf., Appl. Math., 61, SIAM, Philadelphia, PA, 1992 | MR | Zbl

[11] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[12] Skopina M., “Local convergence of Fourier series with respect to periodized wavelets”, J. Approx. Theory, 94:2 (1998), 191–202 | DOI | MR | Zbl

[13] Chanillo S., Muckenhoupt B., “Weak type estimates for Cesero sums of Jaconi Polynomial series”, Mem. Amer. Math. Soc., 102:487 (1993), 1–90 | MR