Orthogonal polynomial Schauder bases in~$C[-1,1]$ with optimal growth of degrees
Sbornik. Mathematics, Tome 192 (2001) no. 3, pp. 433-454

Voir la notice de l'article provenant de la source Math-Net.Ru

For each $\varepsilon>0$ an orthogonal Schauder basis of algebraic polynomials $P_n$ in $C[-1,1]$ is constructed such that the degrees of the polynomials have the estimate $n(1+\varepsilon)$. This growth rate is the lowest possible.
@article{SM_2001_192_3_a5,
     author = {M. A. Skopina},
     title = {Orthogonal polynomial {Schauder} bases in~$C[-1,1]$ with optimal growth of degrees},
     journal = {Sbornik. Mathematics},
     pages = {433--454},
     publisher = {mathdoc},
     volume = {192},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_3_a5/}
}
TY  - JOUR
AU  - M. A. Skopina
TI  - Orthogonal polynomial Schauder bases in~$C[-1,1]$ with optimal growth of degrees
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 433
EP  - 454
VL  - 192
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_3_a5/
LA  - en
ID  - SM_2001_192_3_a5
ER  - 
%0 Journal Article
%A M. A. Skopina
%T Orthogonal polynomial Schauder bases in~$C[-1,1]$ with optimal growth of degrees
%J Sbornik. Mathematics
%D 2001
%P 433-454
%V 192
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_3_a5/
%G en
%F SM_2001_192_3_a5
M. A. Skopina. Orthogonal polynomial Schauder bases in~$C[-1,1]$ with optimal growth of degrees. Sbornik. Mathematics, Tome 192 (2001) no. 3, pp. 433-454. http://geodesic.mathdoc.fr/item/SM_2001_192_3_a5/