Index hypergeometric transform and imitation of analysis of Berezin kernels on hyperbolic spaces
Sbornik. Mathematics, Tome 192 (2001) no. 3, pp. 403-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The index hypergeometric transform (also called the Olevskii transform or the Jacobi transform) generalizes the spherical transform in $L^2$ on rank 1 symmetric spaces (that is, real, complex, and quaternionic Lobachevskii spaces). The aim of this paper is to obtain properties of the index hypergeometric transform imitating the analysis of Berezin kernels on rank 1 symmetric spaces. The problem of the explicit construction of a unitary operator identifying $L^2$ and a Berezin space is also discussed. This problem reduces to an integral expression (the $\Lambda$-function), which apparently cannot be expressed in a finite form in terms of standard special functions. (Only for certain special values of the parameter can this expression be reduced to the so-called Volterra type special functions.) Properties of this expression are investigated. For some series of symmetric spaces of large rank the above operator of unitary equivalence can be expressed in terms of the determinant of a matrix of $\Lambda$-functions.
@article{SM_2001_192_3_a4,
     author = {Yu. A. Neretin},
     title = {Index hypergeometric transform and imitation of analysis of {Berezin} kernels on hyperbolic spaces},
     journal = {Sbornik. Mathematics},
     pages = {403--432},
     year = {2001},
     volume = {192},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_3_a4/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Index hypergeometric transform and imitation of analysis of Berezin kernels on hyperbolic spaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 403
EP  - 432
VL  - 192
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_3_a4/
LA  - en
ID  - SM_2001_192_3_a4
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Index hypergeometric transform and imitation of analysis of Berezin kernels on hyperbolic spaces
%J Sbornik. Mathematics
%D 2001
%P 403-432
%V 192
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2001_192_3_a4/
%G en
%F SM_2001_192_3_a4
Yu. A. Neretin. Index hypergeometric transform and imitation of analysis of Berezin kernels on hyperbolic spaces. Sbornik. Mathematics, Tome 192 (2001) no. 3, pp. 403-432. http://geodesic.mathdoc.fr/item/SM_2001_192_3_a4/

[1] Weyl H., “Über gewönliche lineare Differentialgleichungen mis singulären Stellen und ihre Eigenfunktionen (2 Note)”, Nachr. Konig. Gess. Wissen. Göttingen. Math.-Phys., 1910, 442–467 ; Weyl H., Gessamelte Abhandlungen, V. 1, Springer-Verlag, Berlin, 1968, 222–247 | Zbl | MR

[2] Mehler F. G., “Über eine mit den Kugel und Zylinderfunctionen verwandte Function und ihre Anwedung in der Theorie der Elektricitatsvertheilung”, Math. Ann., 18 (1881), 161–194 | DOI | MR

[3] Tichmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, T. 1, IL, M., 1960

[4] Olevskii M. N., “O predstavlenii proizvolnoi funktsii cherez integral s yadrom, vklyuchayuschim gipergeometricheskuyu funktsiyu”, Dokl. AN SSSR, 69:1 (1949), 11–14 | MR | Zbl

[5] Flensted-Jensen M., Koornwinder T., “The convolution structure for Jacobi function expansions”, Ark. Math., 11 (1973), 245–262 | DOI | MR | Zbl

[6] Koornwinder T. H., “A new proof of a Paley–Wiener theorem for Jacobi transform”, Ark. Math., 13 (1975), 145–159 | DOI | MR | Zbl

[7] Koornwinder T. H., “Jacobi functions and analysis on noncompact symmetric spaces”, Special functions: group theoretical aspects and applications, eds. R. Askey et al., Reidel, Dodrecht, 1984, 1–85 | MR | Zbl

[8] Koornwinder T. H., “Special orthogonal polynomial systems mapping to each other by Fourier–Jacobi transform”, Lecture Notes in Math., 1171, 1985, 174–183 | MR | Zbl

[9] Yakubovich S. B., Luchko Yu. F., The hypergeometric approach to integral transforms and convolutions, Math. Appl. (Dordrecht), 287, Kluwer Acad. Publ., Dordrecht, 1994 | MR | Zbl

[10] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[11] Prudnikov A. M., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981–1986 | MR | Zbl

[12] Koelink E., Stockman J. V., The Askey-Wilson function transform scheme, Preprint, http://xxx.lanl.gov/math/9912140

[13] Heckman G. I., Opdam E. M., “Root systems and hypergeometric functions, I”, Compositio Math., 64 (1987), 329–352 | MR | Zbl

[14] Heckman G. I., “Root systems and hypergeometric functions, II”, Compositio Math., 64 (1987), 353–373 | MR | Zbl

[15] Opdam E. M., “Root systems and hypergeometric functions. III; IV”, Compositio Math., 67 (1988), 21–49 ; 191–209 | MR | Zbl

[16] Berezin F. A., “Svyaz mezhdu ko i kontravariantnymi simvolami operatorov na klassicheskikh kompleksnykh klassicheskikh simmetricheskikh prostranstvakh”, Dokl. AN SSSR, 241:1 (1978), 15–17 | MR | Zbl

[17] Neretin Yu. A., Olshanskii G. I., “Granichnye znacheniya golomorfnykh funktsii, osobye unitarnye predstavleniya grupp $\operatorname O(p,q)$ i ikh predely pri $q\to0$”, Zapiski nauch. sem. POMI, 223, POMI, SPb., 1995, 9–91 ; J. Math. Sci. New York, 87:6 (1997), 3983–4035 | MR | Zbl | DOI

[18] Olafsson G., Ørsted B., “Generalizations of the Bargmann transform”, Lie theory and its applications in physics, Proceedings of the international workshop (Clausthal, Germany, August 14–17, 1995), eds. H.-D. Döbner et al., World Scientific, Singapore, 1996, 3–14 | MR | Zbl

[19] van Dijk G., Hille S. C., “Canonical representations related to hyperbolic spaces”, J. Funct. Anal., 147:1 (1997), 109–139 | DOI | MR | Zbl

[20] Hille S. C., Canonical representations, Ph. D. Thesis, Leiden University, 1999

[21] Neretin Yu. A., “Matrichnye analogi $\text{{\rm B}}$-funktsii i formula Plansherelya dlya kern-predstavlenii Berezina”, Matem. sb., 191:5 (2000), 67–100 ; Preprint, http://xxx.lanl.gov/math.RT/9905045 | MR | Zbl

[22] Neretin Yu. A., “O razdelenii spektrov v analize yader Berezina”, Funkts. analiz i ego prilozh., 34:3 (2000), 49–62 ; Preprint, http://xxx.lanl.gov/math.RT/9906075 | MR | Zbl

[23] Neretin Yu. A., Plancherel formula for Berezin deformation of $L^2$ on Riemannian symmetric space, Preprint, http://xxx.lanl.gov/math/9911020 | MR

[24] Zhang Zhen Kai, “Tensor products of weighted Bergman spaces and invariant Ha-plitz operators”, Math. Scand., 71 (1992), 69–84 | MR | Zbl

[25] Cherednik I., Harish-Chandra transform and difference operators

[26] Myller-Lebedeff W., “Sur l'équation hypergéometrique”, C.R. Acad. Sci. Paris, 149 (1909), 561–563

[27] Myller-Lebedeff W., “Orthogonale hypergeometrische Functionen”, Math. Ann., 70 (1911), 87–93 | DOI | MR | Zbl

[28] Danford N., Shvarts Dzh. T., Lineinye operatory, Mir, M., 1966

[29] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1965; Т. 2, 1966 ; Т. 3, 1967 | MR

[30] Andrews G. E., Askey R., Roy R., Special functions, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[31] Vilenkin N. Ya., Klimyk A. U., Representations of Lie groups and special functions, V. 1, Math. Appl. (Soviet Ser.), 72, Kluwer Acad. Publ., Dordrecht, 1991 | MR | Zbl

[32] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR

[33] Gross K. I., Richards D. S. P., “Total positivity, spherical series, and hypergeometric functions of matrix argument”, J. Approx. Theory, 59 (1989), 224–246 | DOI | MR | Zbl

[34] Odzijewicz A., “Quantum algebras and $q$-special functions related to coherent states maps of the disk”, Comm. Math. Phys., 192 (1998), 183–215 | DOI | MR | Zbl

[35] Slater L. J., Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966 | Zbl

[36] Marichev O. I., Metody vychisleniya integralov ot spetsialnykh funktsii, Nauka i tekhnika, Minsk, 1978 | MR

[37] Volterra V., “Teoria delle potenze dei logaritmi e delle funzioni di decomposizione”, Mem. Accad. Lincei. Ser. 5, 11:4 (1916), 167–250

[38] Humbert P., Poli L., “Sur certaines transcendentes liees au calcul symbolique”, Bull. Sci. Math. (2), 68 (1944), 204–214 | MR | Zbl

[39] Colombo S., “Sur quelques nouvelles correspondances symboliques”, Bull. Sci. Math. (2), 67 (1943), 104–107 | MR

[40] McLachlan N. W., Humbert P., Poli L., Supplement au formulaire pour le calcul symbolique, Mem. Sci. Math., 113, Gauthier-Villars, Paris, 1950 | MR | Zbl

[41] Neretin Yu. A., Matrix balls, radial analysis of Berezin kernels, and hypergeometric determinants, Preprint, http://xxx.lanl.gov/math/0012220 | MR