Systoles on Heisenberg groups with Carnot–Carathéodory metrics
Sbornik. Mathematics, Tome 192 (2001) no. 3, pp. 347-374
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The systolic properties of the nilmanifolds $\mathscr N^{2n+1}$ associated with the higher Heisenberg groups $H_{2n+1}$ are studied. Effective estimates of the systolic constants $\sigma(\mathscr N^{2n+1})$ in the Carnot–Carathéodory geometry, as functions of the parameters defining a uniform lattice on $H_{2n+1}$, are obtained.
@article{SM_2001_192_3_a1,
     author = {V. V. Dontsov},
     title = {Systoles on {Heisenberg} groups with {Carnot{\textendash}Carath\'eodory} metrics},
     journal = {Sbornik. Mathematics},
     pages = {347--374},
     year = {2001},
     volume = {192},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_3_a1/}
}
TY  - JOUR
AU  - V. V. Dontsov
TI  - Systoles on Heisenberg groups with Carnot–Carathéodory metrics
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 347
EP  - 374
VL  - 192
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_3_a1/
LA  - en
ID  - SM_2001_192_3_a1
ER  - 
%0 Journal Article
%A V. V. Dontsov
%T Systoles on Heisenberg groups with Carnot–Carathéodory metrics
%J Sbornik. Mathematics
%D 2001
%P 347-374
%V 192
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2001_192_3_a1/
%G en
%F SM_2001_192_3_a1
V. V. Dontsov. Systoles on Heisenberg groups with Carnot–Carathéodory metrics. Sbornik. Mathematics, Tome 192 (2001) no. 3, pp. 347-374. http://geodesic.mathdoc.fr/item/SM_2001_192_3_a1/

[1] Aleksandrov A. D., Berestovskii V. N., Nikolaev I. G., “Obobschennye rimanovy prostranstva”, UMN, 41:3 (1986), 8–11 | MR

[2] Berger M., “Systoles et applications selon Gromov”, Séminaire N. Bourbaki, Exposé No 771, Astérisque, 216, 1993, 279–310 | MR | Zbl

[3] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[4] Pu P. M., “Some inequalities in certain nonorientable Riemannian manifolds”, Pacific J. Math., 2 (1952), 55–71 | MR | Zbl

[5] Bavard C., “Inégalités isosystoliques conformes pour la bouteille de Klein”, Geom. Dedicata, 27:3 (1988), 349–355 | DOI | MR | Zbl

[6] Gromov M., “Filling Riemannian manifolds”, J. Differential Geom., 18:1 (1983), 1–147 | MR | Zbl

[7] Babenko I. K., “Asimptoticheskie invarianty gladkikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 56:4 (1992), 707–751 | MR | Zbl

[8] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968 | MR

[9] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napravleniya, 16, VINITI, M., 1987, 5–221 | MR

[10] Rashevskii P. K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uch. zapiski ped. in-ta im. K. Libknekhta. Ser. fiz.-matem. nauk, 1938, no. 2, 83–94

[11] Chow W. L., “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1939), 98–105 | DOI | MR | Zbl

[12] Berestovskii V. N., “Odnorodnye mnogoobraziya s vnutrennei metrikoi, I”, Sib. matem. zhurn., 29:6 (1988), 17–29 | MR

[13] Berestovskii V. N., “Odnorodnye mnogoobraziya s vnutrennei metrikoi, II”, Sib. matem. zhurn., 30:2 (1989), 14–28 | MR | Zbl

[14] Maltsev L. I., “Ob odnom klasse odnorodnykh prostranstv”, Izv. AN SSSR. Ser. matem., 13:1 (1949), 9–32 | MR | Zbl

[15] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR | Zbl

[16] Babenko I. K., “Zamknutye geodezicheskie, asimptoticheskii ob'em i kharakteristiki gruppovogo rosta”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 675–711 | MR | Zbl

[17] Berestovskii V. N., “Geodezicheskie negolonomnykh levoinvariantnykh vnutrennikh metrik na gruppe Geizenberga i izoperimetriksy ploskosti Minkovskogo”, Sib. matem. zhurn., 35:1 (1994), 3–11 | MR | Zbl

[18] Dontsov V. V., “Sistoly ravnomernykh reshetok na gruppe Geizenberga s metrikami Karno–Karateodori”, Fundam. i prikl. matem., 6:2 (2000), 401–432 | MR | Zbl