Local asymptotics of the~ratio of orthogonal polynomials in the~neighbourhood of an~end-point of the~support of the~orthogonality measure
Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 299-321

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of studying the asymptotic behaviour of orthogonal polynomials in the neighbourhood of an end-point of the support of the orthogonality measure is put forward. The asymptotics in the neighbourhood of the end-point is found in terms of the asymptotics of the values of the polynomials at the point itself and the asymptotic behaviour of the coefficients of the recurrence relations. Applications of the result obtained are considered.
@article{SM_2001_192_2_a7,
     author = {D. N. Tulyakov},
     title = {Local asymptotics of the~ratio of orthogonal polynomials in the~neighbourhood of an~end-point of the~support of the~orthogonality measure},
     journal = {Sbornik. Mathematics},
     pages = {299--321},
     publisher = {mathdoc},
     volume = {192},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_2_a7/}
}
TY  - JOUR
AU  - D. N. Tulyakov
TI  - Local asymptotics of the~ratio of orthogonal polynomials in the~neighbourhood of an~end-point of the~support of the~orthogonality measure
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 299
EP  - 321
VL  - 192
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_2_a7/
LA  - en
ID  - SM_2001_192_2_a7
ER  - 
%0 Journal Article
%A D. N. Tulyakov
%T Local asymptotics of the~ratio of orthogonal polynomials in the~neighbourhood of an~end-point of the~support of the~orthogonality measure
%J Sbornik. Mathematics
%D 2001
%P 299-321
%V 192
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_2_a7/
%G en
%F SM_2001_192_2_a7
D. N. Tulyakov. Local asymptotics of the~ratio of orthogonal polynomials in the~neighbourhood of an~end-point of the~support of the~orthogonality measure. Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 299-321. http://geodesic.mathdoc.fr/item/SM_2001_192_2_a7/