On best convergence
Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 277-297

Voir la notice de l'article provenant de la source Math-Net.Ru

Best convergence with respect to the $\mathbf L_p$-norm is studied for series in various complete orthonormal systems of functions.
@article{SM_2001_192_2_a6,
     author = {A. I. Rubinshtein},
     title = {On best convergence},
     journal = {Sbornik. Mathematics},
     pages = {277--297},
     publisher = {mathdoc},
     volume = {192},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_2_a6/}
}
TY  - JOUR
AU  - A. I. Rubinshtein
TI  - On best convergence
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 277
EP  - 297
VL  - 192
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_2_a6/
LA  - en
ID  - SM_2001_192_2_a6
ER  - 
%0 Journal Article
%A A. I. Rubinshtein
%T On best convergence
%J Sbornik. Mathematics
%D 2001
%P 277-297
%V 192
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_2_a6/
%G en
%F SM_2001_192_2_a6
A. I. Rubinshtein. On best convergence. Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 277-297. http://geodesic.mathdoc.fr/item/SM_2001_192_2_a6/