Probability and ergodic laws in the distribution of the fractional parts of the values of polynomials
Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 261-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper the fractional parts of the values of a polynomial are regarded as random variables depending on a randomly chosen vector whose coordinates are all the coefficients of the polynomial except the leading coefficient, which is assumed to be fixed. It is proved that the fractional parts and the distances between them are equally distributed and independent; the strong and superstrong laws of large numbers and the central limit theorem are proved for them. The probability distribution is found for the fractional part of a sum of the values of polynomials, which turns out to be universal.
@article{SM_2001_192_2_a5,
     author = {L. D. Pustyl'nikov},
     title = {Probability and ergodic laws in the distribution of the~fractional parts of the~values of polynomials},
     journal = {Sbornik. Mathematics},
     pages = {261--276},
     year = {2001},
     volume = {192},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_2_a5/}
}
TY  - JOUR
AU  - L. D. Pustyl'nikov
TI  - Probability and ergodic laws in the distribution of the fractional parts of the values of polynomials
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 261
EP  - 276
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_2_a5/
LA  - en
ID  - SM_2001_192_2_a5
ER  - 
%0 Journal Article
%A L. D. Pustyl'nikov
%T Probability and ergodic laws in the distribution of the fractional parts of the values of polynomials
%J Sbornik. Mathematics
%D 2001
%P 261-276
%V 192
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2001_192_2_a5/
%G en
%F SM_2001_192_2_a5
L. D. Pustyl'nikov. Probability and ergodic laws in the distribution of the fractional parts of the values of polynomials. Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 261-276. http://geodesic.mathdoc.fr/item/SM_2001_192_2_a5/

[1] Hardy G. H., Littlewood J. E., “Some problems of Diophantine approximations”, Proc. Internat. Congr. Math. Cambridge, 1912, 223–229

[2] Weyl H., “Über die Gleichverteilung der Zahlen mod. Eins”, Math. Ann., 77 (1916), 313–352 | DOI | MR | Zbl

[3] Berry M. V., Tabor M., “Level clustering in the regular spectrum”, Proc. Roy. Soc. London Ser. A, 356 (1977), 375–394 | DOI | Zbl

[4] Kac M., “On distribution of values of sums of the type $\sum f(2^kt)$”, Ann. Math., 47:1 (1946), 33–49 | DOI | MR | Zbl

[5] Vinogradov I. M., “O raspredelenii drobnykh chastei znachenii funktsii odnoi peremennoi”, Zhurn. Leningradskogo fiz.-matem. ob-va, 1:1 (1926), 56–65

[6] Vinogradov I. M., “Analiticheskoe dokazatelstvo teoremy o raspredelenii drobnykh chastei mnogochlena”, Izv. AN SSSR. Ser. 6, 21 (1927), 567–578 | Zbl

[7] Vinogradov I. M., “K voprosu o raspredelenii drobnykh chastei mnogochlena”, Izv. AN SSSR. Ser. matem., 25 (1961), 749–754 | MR | Zbl

[8] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR

[9] Pustylnikov L. D., “O novykh otsenkakh summ Veilya i ostatochnogo chlena v raspredelenii drobnykh chastei znachenii mnogochlena”, UMN, 36:2 (1981), 203–204 | MR | Zbl

[10] Pustyl'nikov L. D., “New estimates of Weyl sums and the remainder term in the law of distribution of the fractional part of a polynomial”, Ergodic Theory Dynam. Systems, 1991, no. 11, 515–534 | MR | Zbl

[11] Pustylnikov L. D., “Raspredelenie drobnykh chastei znachenii mnogochlena, summy Veilya i ergodicheskaya teoriya”, UMN, 48:4 (1993), 131–166 | MR | Zbl

[12] Pustylnikov L. D., “Obobschennye tsepnye drobi i otsenki summ Veilya i ostatochnogo chlena v zakone raspredeleniya drobnykh chastei znachenii mnogochlena”, Matem. zametki, 56:6 (1994), 144–148 | MR

[13] Pustyl'nikov L. D., “Generalized continued fractions and ergodic theory”, J. Math. Sci., 95:5 (1999), 2552–2563 | DOI | MR | Zbl

[14] Postnikov A. G., Ergodicheskie voprosy teorii sravnenii i teorii diofantovykh priblizhenii, Trudy MIAN, 82, Nauka, M., 1966 | MR

[15] Kuipers L., Niederreiter H., Uniform distribution of sequences, Wiley, New York, 1974 | MR | Zbl

[16] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1975 | MR

[17] Pustylnikov L. D., “Veroyatnostnye zakony v raspredelenii drobnykh chastei znachenii mnogochlenov i obosnovanie gipotezy kvantovogo khaosa”, UMN, 54:6 (1999), 173–174 | MR | Zbl

[18] Fortet R., “Sur une suite également répartié”, Studia math., 1 (1940), 54–69 | MR

[19] Pustylnikov L. D., Veroyatnostnye i ergodicheskie zakony v raspredelenii drobnykh chastei znachenii mnogochlenov, Preprint IPM RAN No 48, 1999

[20] Fürstenberg M., “Strict ergodicity and transformation of the torus”, Amer. J. Math., 83:4 (1961), 573–601 | DOI | MR