Homogenization of a~mixed problem with Signorini condition for an~elliptic operator in a~perforated domain
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 245-260
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the case of a 2-connected $\varepsilon$-periodic $(\varepsilon\in(0,1))$ perforated space with a bounded domain $\Omega_\varepsilon$ selected in it the homogenization property as
$\varepsilon\to0$ is proved for the boundary-value problem for a second-order elliptic operator in the domain $\Omega_\varepsilon$ with one-sided condition of Signorini type on the boundaries of “cavities” and with Dirichlet condition on the outer boundary.
			
            
            
            
          
        
      @article{SM_2001_192_2_a4,
     author = {S. E. Pastukhova},
     title = {Homogenization of a~mixed problem with {Signorini} condition for an~elliptic operator in a~perforated domain},
     journal = {Sbornik. Mathematics},
     pages = {245--260},
     publisher = {mathdoc},
     volume = {192},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_2_a4/}
}
                      
                      
                    TY - JOUR AU - S. E. Pastukhova TI - Homogenization of a~mixed problem with Signorini condition for an~elliptic operator in a~perforated domain JO - Sbornik. Mathematics PY - 2001 SP - 245 EP - 260 VL - 192 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_2_a4/ LA - en ID - SM_2001_192_2_a4 ER -
S. E. Pastukhova. Homogenization of a~mixed problem with Signorini condition for an~elliptic operator in a~perforated domain. Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/SM_2001_192_2_a4/
