Homogenization of a mixed problem with Signorini condition for an elliptic operator in a perforated domain
Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 245-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the case of a 2-connected $\varepsilon$-periodic $(\varepsilon\in(0,1))$ perforated space with a bounded domain $\Omega_\varepsilon$ selected in it the homogenization property as $\varepsilon\to0$ is proved for the boundary-value problem for a second-order elliptic operator in the domain $\Omega_\varepsilon$ with one-sided condition of Signorini type on the boundaries of “cavities” and with Dirichlet condition on the outer boundary.
@article{SM_2001_192_2_a4,
     author = {S. E. Pastukhova},
     title = {Homogenization of a~mixed problem with {Signorini} condition for an~elliptic operator in a~perforated domain},
     journal = {Sbornik. Mathematics},
     pages = {245--260},
     year = {2001},
     volume = {192},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_2_a4/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - Homogenization of a mixed problem with Signorini condition for an elliptic operator in a perforated domain
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 245
EP  - 260
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_2_a4/
LA  - en
ID  - SM_2001_192_2_a4
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T Homogenization of a mixed problem with Signorini condition for an elliptic operator in a perforated domain
%J Sbornik. Mathematics
%D 2001
%P 245-260
%V 192
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2001_192_2_a4/
%G en
%F SM_2001_192_2_a4
S. E. Pastukhova. Homogenization of a mixed problem with Signorini condition for an elliptic operator in a perforated domain. Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/SM_2001_192_2_a4/

[1] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983 | MR

[2] Glovinski G. G., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1978

[3] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva, Nauka, M., 1988 | MR | Zbl

[4] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[5] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[6] Zhikov V. V., “Ob usrednenii v perforirovannykh sluchainykh oblastyakh obschego vida”, Matem. zametki, 53:1 (1993), 41–58 | MR | Zbl

[7] Zhikov V. V., “Ob usrednenii nelineinykh variatsionnykh zadach v perforirovannykh oblastyakh”, Doklady RAN, 345:2 (1995), 156–160 | MR | Zbl

[8] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 187:8 (1996), 3–40 | MR | Zbl

[9] Zhikov V. V., “K tekhnike usredneniya variatsionnykh zadach”, Funkts. analiz, 33:1 (1999), 14–29 | MR | Zbl

[10] Zhikov V. V., Rychago M. E., “Usrednenie nelineinykh ellipticheskikh uravnenii vtorogo poryadka v perforirovannykh oblastyakh”, Izv. RAN. Ser. matem., 61:1 (1997), 69–88 | MR | Zbl

[11] Ekland N., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[12] Acerbi E., Chiado Piat V., Dal Maso G., Percivale D., “An extension theorem for connected sets and homogenization in general periodic domains”, Nonlinear Anal., 18:5 (1992), 481–496 | DOI | MR | Zbl

[13] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl

[14] Iosifyan G. A., “Ob usrednenii nekotorykh kraevykh zadach s nelineinymi granichnymi usloviyami v perforirovannykh oblastyakh”, UMN, 51:5 (1996), 233–234 | MR | Zbl

[15] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh sred, Izd-vo MGU, M., 1990 | Zbl

[16] Pastukhova S. E., “Metod kompensirovannoi kompaktnosti Tartara v usrednenii spektra smeshannoi zadachi dlya ellipticheskogo uravneniya v perforirovannoi oblasti s tretim kraevym usloviem”, Matem. sb., 186:5 (1995), 127–144 | MR | Zbl

[17] Pastukhova S. E., “O pogreshnosti usredneniya dlya zadachi Steklova v perforirovannoi oblasti”, Differents. uravneniya, 31:6 (1995), 1042–1054 | MR

[18] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[19] Pastukhova S. E., “Ob usrednenii odnogo variatsionnogo neravenstva dlya uprugogo tela s periodicheski rapolozhennymi treschinami”, Matem. sb., 191:2 (2000), 149–164 | MR | Zbl