Homogenization of a~mixed problem with Signorini condition for an~elliptic operator in a~perforated domain
Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 245-260

Voir la notice de l'article provenant de la source Math-Net.Ru

For the case of a 2-connected $\varepsilon$-periodic $(\varepsilon\in(0,1))$ perforated space with a bounded domain $\Omega_\varepsilon$ selected in it the homogenization property as $\varepsilon\to0$ is proved for the boundary-value problem for a second-order elliptic operator in the domain $\Omega_\varepsilon$ with one-sided condition of Signorini type on the boundaries of “cavities” and with Dirichlet condition on the outer boundary.
@article{SM_2001_192_2_a4,
     author = {S. E. Pastukhova},
     title = {Homogenization of a~mixed problem with {Signorini} condition for an~elliptic operator in a~perforated domain},
     journal = {Sbornik. Mathematics},
     pages = {245--260},
     publisher = {mathdoc},
     volume = {192},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_2_a4/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - Homogenization of a~mixed problem with Signorini condition for an~elliptic operator in a~perforated domain
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 245
EP  - 260
VL  - 192
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_2_a4/
LA  - en
ID  - SM_2001_192_2_a4
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T Homogenization of a~mixed problem with Signorini condition for an~elliptic operator in a~perforated domain
%J Sbornik. Mathematics
%D 2001
%P 245-260
%V 192
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_2_a4/
%G en
%F SM_2001_192_2_a4
S. E. Pastukhova. Homogenization of a~mixed problem with Signorini condition for an~elliptic operator in a~perforated domain. Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/SM_2001_192_2_a4/