On optimal recovery methods in Hardy--Sobolev spaces
Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 225-244

Voir la notice de l'article provenant de la source Math-Net.Ru

A general approach to the construction of optimal methods of recovery of linear functionals from a known solution of the dual extremal problem is proposed which is based on a certain parametrization of this solution of the dual problem. Using this approach several optimal recovery problems in Hardy–Sobolev classes are successfully solved, including the recovery of functions from information about their Fourier coefficients or about the values of the function at some system of nodes, in the periodic and non-periodic cases.
@article{SM_2001_192_2_a3,
     author = {K. Yu. Osipenko},
     title = {On optimal recovery methods in {Hardy--Sobolev} spaces},
     journal = {Sbornik. Mathematics},
     pages = {225--244},
     publisher = {mathdoc},
     volume = {192},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_2_a3/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - On optimal recovery methods in Hardy--Sobolev spaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 225
EP  - 244
VL  - 192
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_2_a3/
LA  - en
ID  - SM_2001_192_2_a3
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T On optimal recovery methods in Hardy--Sobolev spaces
%J Sbornik. Mathematics
%D 2001
%P 225-244
%V 192
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_2_a3/
%G en
%F SM_2001_192_2_a3
K. Yu. Osipenko. On optimal recovery methods in Hardy--Sobolev spaces. Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 225-244. http://geodesic.mathdoc.fr/item/SM_2001_192_2_a3/