On optimal recovery methods in Hardy–Sobolev spaces
Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 225-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general approach to the construction of optimal methods of recovery of linear functionals from a known solution of the dual extremal problem is proposed which is based on a certain parametrization of this solution of the dual problem. Using this approach several optimal recovery problems in Hardy–Sobolev classes are successfully solved, including the recovery of functions from information about their Fourier coefficients or about the values of the function at some system of nodes, in the periodic and non-periodic cases.
@article{SM_2001_192_2_a3,
     author = {K. Yu. Osipenko},
     title = {On optimal recovery methods in {Hardy{\textendash}Sobolev} spaces},
     journal = {Sbornik. Mathematics},
     pages = {225--244},
     year = {2001},
     volume = {192},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_2_a3/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - On optimal recovery methods in Hardy–Sobolev spaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 225
EP  - 244
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_2_a3/
LA  - en
ID  - SM_2001_192_2_a3
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T On optimal recovery methods in Hardy–Sobolev spaces
%J Sbornik. Mathematics
%D 2001
%P 225-244
%V 192
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2001_192_2_a3/
%G en
%F SM_2001_192_2_a3
K. Yu. Osipenko. On optimal recovery methods in Hardy–Sobolev spaces. Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 225-244. http://geodesic.mathdoc.fr/item/SM_2001_192_2_a3/

[1] Smolyak S. A., Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1965

[2] Osipenko K. Yu., “Nailuchshee priblizhenie analiticheskikh funktsii po informatsii ob ikh znacheniyakh v konechnom chisle tochek”, Matem. zametki, 19:1 (1976), 29–40 | MR | Zbl

[3] Magaril-Ilyaev G. G., Osipenko K. Yu., “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Matem. zametki, 50:6 (1991), 85–93 | MR

[4] Fisher S. D., Micchelli C. A., “The $n$-width of sets of analytic functions”, Duke Math. J., 47:4 (1980), 789–801 | DOI | MR | Zbl

[5] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[6] Osipenko K. Yu., “Exact values of $n$-widths of Hardy–Sobolev classes”, Constr. Approx., 13 (1997), 17–27 | DOI | MR | Zbl

[7] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[8] Osipenko K. Yu., Wilderotter K., “Optimal information for approximating periodic functions”, Math. Comput., 66:220 (1997), 1579–1592 | DOI | MR | Zbl

[9] Osipenko K. Yu., “Ob $n$-poperechnikakh, optimalnykh kvadraturnykh formulakh i optimalnom vosstanovlenii funktsii, analiticheskikh v polose”, Izv. RAN. Ser. matem., 58:4 (1994), 55–79 | MR | Zbl

[10] Pinkus A., $n$-Widths in approximation theory, Springer-Verlag, Berlin, 1985 | MR

[11] Wilderotter K., “Optimal approximation of periodic analytic functions with integrable boundary values”, J. Approx. Theory, 84:2 (1996), 236–246 | DOI | MR | Zbl

[12] Fisher S. D., “Envelopes, widths, and Landau problems for analytic functions”, Constr. Approx., 5:2 (1989), 171–187 | DOI | MR | Zbl

[13] Bojanov B. D., Grozev G. R., “A note on the optimal recovery of functions in $H^\infty$”, J. Approx. Theory, 53:1 (1988), 67–77 | DOI | MR | Zbl