Triangular de Rham cohomology of compact Kahler manifolds
Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 187-214

Voir la notice de l'article provenant de la source Math-Net.Ru

The de Rham $H^1_{DR}(M,G)$ of a smooth manifold $M$ with values in a group Lie $G$ is studied. By definition, this is the quotient of the set of flat connections in the trivial principal bundle $M\times G$ by the so-called gauge equivalence. The case under consideration is the one when $M$ is a compact Kahler manifold and $G$ is a soluble complex linear algebraic group in a special class containing the Borel subgroups of all complex classical groups and, in particular, the group of all triangular matrices. In this case a description of the set $H^1_{DR}(M,G)$ in terms of the cohomology of $M$ with values in the (Abelian) sheaves of flat sections of certain flat Lie algebra bundles with fibre $\mathfrak g$ (the tangent Lie algebra of $G$) or, equivalently, in terms of the harmonic forms on $M$ representing this cohomology is obtained.
@article{SM_2001_192_2_a1,
     author = {A. Yu. Brudnyi and A. L. Onishchik},
     title = {Triangular de {Rham} cohomology of compact {Kahler} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {187--214},
     publisher = {mathdoc},
     volume = {192},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Brudnyi
AU  - A. L. Onishchik
TI  - Triangular de Rham cohomology of compact Kahler manifolds
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 187
EP  - 214
VL  - 192
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_2_a1/
LA  - en
ID  - SM_2001_192_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Brudnyi
%A A. L. Onishchik
%T Triangular de Rham cohomology of compact Kahler manifolds
%J Sbornik. Mathematics
%D 2001
%P 187-214
%V 192
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_2_a1/
%G en
%F SM_2001_192_2_a1
A. Yu. Brudnyi; A. L. Onishchik. Triangular de Rham cohomology of compact Kahler manifolds. Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 187-214. http://geodesic.mathdoc.fr/item/SM_2001_192_2_a1/