Triangular de Rham cohomology of compact Kahler manifolds
Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 187-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The de Rham $H^1_{DR}(M,G)$ of a smooth manifold $M$ with values in a group Lie $G$ is studied. By definition, this is the quotient of the set of flat connections in the trivial principal bundle $M\times G$ by the so-called gauge equivalence. The case under consideration is the one when $M$ is a compact Kahler manifold and $G$ is a soluble complex linear algebraic group in a special class containing the Borel subgroups of all complex classical groups and, in particular, the group of all triangular matrices. In this case a description of the set $H^1_{DR}(M,G)$ in terms of the cohomology of $M$ with values in the (Abelian) sheaves of flat sections of certain flat Lie algebra bundles with fibre $\mathfrak g$ (the tangent Lie algebra of $G$) or, equivalently, in terms of the harmonic forms on $M$ representing this cohomology is obtained.
@article{SM_2001_192_2_a1,
     author = {A. Yu. Brudnyi and A. L. Onishchik},
     title = {Triangular de {Rham} cohomology of compact {Kahler} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {187--214},
     year = {2001},
     volume = {192},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Brudnyi
AU  - A. L. Onishchik
TI  - Triangular de Rham cohomology of compact Kahler manifolds
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 187
EP  - 214
VL  - 192
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_2_a1/
LA  - en
ID  - SM_2001_192_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Brudnyi
%A A. L. Onishchik
%T Triangular de Rham cohomology of compact Kahler manifolds
%J Sbornik. Mathematics
%D 2001
%P 187-214
%V 192
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2001_192_2_a1/
%G en
%F SM_2001_192_2_a1
A. Yu. Brudnyi; A. L. Onishchik. Triangular de Rham cohomology of compact Kahler manifolds. Sbornik. Mathematics, Tome 192 (2001) no. 2, pp. 187-214. http://geodesic.mathdoc.fr/item/SM_2001_192_2_a1/

[1] Goldman W. M., Millson J. J., “The deformation theory of representations of fundamental groups of compact Kähler manifolds”, Publ. Math. IHES, 67 (1988), 43–96 | MR | Zbl

[2] Simpson C. T., “Higgs bundles and local systems”, Publ. Math. IHES, 75 (1992), 5–95 | MR | Zbl

[3] Onischik A. L., “O deformatsiyakh rassloennykh prostranstv”, Dokl. AN SSSR, 161:1 (1965), 45–47 | MR | Zbl

[4] Onischik A. L., “O deformatsiyakh golomorfnykh rassloennykh prostranstv”, Sovremennye problemy teorii analiticheskikh funktsii, Nauka, M., 1966, 236–239 | MR

[5] Brudnyi A., $\overline\partial$-equations on compact Kähler manifolds and representations of fundamental groups, Research Thesis, Technion, Haifa, 1995

[6] Brudnyi A., “Classification theorem for a class of flat connections and representations of Kähler group”, Michigan Math. J., 46:3 (1999), 489–514 | DOI | MR | Zbl

[7] Onischik A. L., “Nekotorye ponyatiya i primeneniya teorii neabelevykh kogomologii”, Tr. MMO, 17, URSS, M., 1967, 45–88 | MR | Zbl

[8] Onishchik A. L., “On non-abelian cochain complexes”, Voprosy teorii grupp i gomologicheskoi algebry, YarGU, Yaroslavl, 1998, 171–197 | MR | Zbl

[9] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, T. 1, Mir, M., 1982 | MR

[10] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR

[11] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl