Orbits and their closures in the spaces $\mathbb C^{k_1}\otimes\dots\otimes\mathbb C^{k_r}$
Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 89-112

Voir la notice de l'article provenant de la source Math-Net.Ru

Natural actions of direct products of general linear groups on tensor products of the corresponding complex linear spaces are considered. Among these actions, all actions with finitely many orbits are distinguished. The main results of the paper are the classification of orbits and the construction of the orbit abutment graphs for all such actions.
@article{SM_2001_192_1_a4,
     author = {P. G. Parfenov},
     title = {Orbits and their closures in the spaces $\mathbb C^{k_1}\otimes\dots\otimes\mathbb C^{k_r}$},
     journal = {Sbornik. Mathematics},
     pages = {89--112},
     publisher = {mathdoc},
     volume = {192},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a4/}
}
TY  - JOUR
AU  - P. G. Parfenov
TI  - Orbits and their closures in the spaces $\mathbb C^{k_1}\otimes\dots\otimes\mathbb C^{k_r}$
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 89
EP  - 112
VL  - 192
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_1_a4/
LA  - en
ID  - SM_2001_192_1_a4
ER  - 
%0 Journal Article
%A P. G. Parfenov
%T Orbits and their closures in the spaces $\mathbb C^{k_1}\otimes\dots\otimes\mathbb C^{k_r}$
%J Sbornik. Mathematics
%D 2001
%P 89-112
%V 192
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_1_a4/
%G en
%F SM_2001_192_1_a4
P. G. Parfenov. Orbits and their closures in the spaces $\mathbb C^{k_1}\otimes\dots\otimes\mathbb C^{k_r}$. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 89-112. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a4/