Orbits and their closures in the spaces $\mathbb C^{k_1}\otimes\dots\otimes\mathbb C^{k_r}$
Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 89-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Natural actions of direct products of general linear groups on tensor products of the corresponding complex linear spaces are considered. Among these actions, all actions with finitely many orbits are distinguished. The main results of the paper are the classification of orbits and the construction of the orbit abutment graphs for all such actions.
@article{SM_2001_192_1_a4,
     author = {P. G. Parfenov},
     title = {Orbits and their closures in the spaces $\mathbb C^{k_1}\otimes\dots\otimes\mathbb C^{k_r}$},
     journal = {Sbornik. Mathematics},
     pages = {89--112},
     year = {2001},
     volume = {192},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a4/}
}
TY  - JOUR
AU  - P. G. Parfenov
TI  - Orbits and their closures in the spaces $\mathbb C^{k_1}\otimes\dots\otimes\mathbb C^{k_r}$
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 89
EP  - 112
VL  - 192
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_1_a4/
LA  - en
ID  - SM_2001_192_1_a4
ER  - 
%0 Journal Article
%A P. G. Parfenov
%T Orbits and their closures in the spaces $\mathbb C^{k_1}\otimes\dots\otimes\mathbb C^{k_r}$
%J Sbornik. Mathematics
%D 2001
%P 89-112
%V 192
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2001_192_1_a4/
%G en
%F SM_2001_192_1_a4
P. G. Parfenov. Orbits and their closures in the spaces $\mathbb C^{k_1}\otimes\dots\otimes\mathbb C^{k_r}$. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 89-112. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a4/

[1] Kraft Kh., Geometricheskie metody v teorii invariantov, Mir, M., 1987 | MR | Zbl

[2] Kac V. G., “Some remarks on nilpotent orbits”, J. Algebra, 64 (1980), 190–213 | DOI | MR | Zbl

[3] Vinberg E. B., “Klassifikatsiya odnorodnykh nilpotentnykh elementov poluprostoi graduirovannoi algebry Li”, Trudy seminara po vektornomu i tenzornomu analizu, 1979, no. 19, 155–177 | MR | Zbl

[4] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napr., 55, VINITI, M., 1989, 137–315 | MR

[5] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[6] Parfenov P. G., “Tenzornye proizvedeniya s konechnym chislom orbit”, UMN, 53:3 (1998), 193–194 | MR | Zbl

[7] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[8] Elashvili A. G., “Statsionarnye podalgebry tochek obschego polozheniya dlya neprivodimykh lineinykh grupp Li”, Funkts. analiz i ego prilozh., 6:2 (1972), 65–78 | MR | Zbl

[9] Dedonne Zh., Geometriya klassicheskikh grupp, Mir, M., 1974 | MR | Zbl