Infinite-dimensional version of the Poincare–Hopf theorem and homological characteristics of functionals
Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 49-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A version of the Poincare–Hopf theorem is established for multivalued vector fields on submanifolds of a reflexive space. The connection between the critical values and homological characteristics of the Lebesgue sets of Lipschitz functionals is studied. Applications to the theory of operator inclusions with parameters are indicated.
@article{SM_2001_192_1_a2,
     author = {V. S. Klimov},
     title = {Infinite-dimensional version {of~the~Poincare{\textendash}Hopf} theorem and homological characteristics of~functionals},
     journal = {Sbornik. Mathematics},
     pages = {49--64},
     year = {2001},
     volume = {192},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a2/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Infinite-dimensional version of the Poincare–Hopf theorem and homological characteristics of functionals
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 49
EP  - 64
VL  - 192
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_1_a2/
LA  - en
ID  - SM_2001_192_1_a2
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Infinite-dimensional version of the Poincare–Hopf theorem and homological characteristics of functionals
%J Sbornik. Mathematics
%D 2001
%P 49-64
%V 192
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2001_192_1_a2/
%G en
%F SM_2001_192_1_a2
V. S. Klimov. Infinite-dimensional version of the Poincare–Hopf theorem and homological characteristics of functionals. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a2/

[1] Pokhozhaev S. I., “O razreshimosti nelineinykh uravnenii s nechetnymi operatorami”, Funkts. analiz i ego prilozh., 1:3 (1967), 66–73 | MR | Zbl

[2] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR

[3] Browder F. E., “Nonlinear elliptic boundary value problems and the generalized topological degree”, Bull. Amer. Math. Soc. (N. S.), 76:5 (1970), 999–1005 | DOI | MR | Zbl

[4] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[5] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[6] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[7] Milnor Dzh., Uolles A., Differentsialnaya topologiya. Nachalnyi kurs, Mir, M., 1972 | MR | Zbl

[8] Oben Zh. P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[9] Bobylev N. A., Emelyanov S. V., Korovin S. K., Geometricheskie metody v variatsionnykh zadachakh, Magistr, M., 1998

[10] Pokhozhaev S. I., “O sobstvennykh funktsiyakh kvazilineinykh ellipticheskikh zadach”, Matem. sb., 82:2 (1970), 192–212 | MR

[11] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973 | MR

[12] Suvorov S. G., “Kriticheskie mnozhestva v zadachakh optimizatsii s neskolkimi ogranicheniyami”, Sib. matem. zhurn., 21:4 (1980), 151–160 | MR | Zbl

[13] Zaslavskii L. Ya., “O kriticheskikh tochkakh lipshitsevykh funktsii na gladkikh mnogoobraziyakh”, Sib. matem. zhurn., 22:1 (1981), 87–93 | MR

[14] Klimov V. S., “Minimaksnye kriticheskie znacheniya negladkikh funktsionalov”, Sib. matem. zhurn., 33:3 (1992), 91–100 | MR

[15] Klimov V. S., “O topologicheskikh kharakteristikakh negladkikh funktsionalov”, Izv. RAN. Ser. matem., 62:5 (1998), 117–134 | MR | Zbl

[16] Klimov V. S., Senchakova N. V., “Ob otnositelnom vraschenii mnogoznachnykh potentsialnykh vektornykh polei”, Matem. sb., 182:10 (1991), 1393–1407 | MR

[17] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl

[18] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, UMN, 32:4 (1977), 3–54 | MR | Zbl

[19] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[20] Stinrod N., Eilenberg S., Osnovaniya algebraicheskoi topologii, IL, M., 1958

[21] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 26–60

[22] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967