Averaging of trajectory attractors of evolution equations with rapidly oscillating terms
Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 11-47
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Evolution equations containing rapidly oscillating terms with respect to the spatial variables or the time variable are considered. The trajectory attractors of these equations are proved to approach the trajectory attractors of the equations whose terms are the averages of the corresponding terms of the original equations. The corresponding Cauchy problems are not assumed here to be uniquely soluble. At the same time if the Cauchy problems for the equations under consideration are uniquely soluble, then they generate semigroups having global attractors. These global attractors also converge to the global attractors of the averaged equations in the corresponding spaces. These results are applied to the following equations and systems of mathematical physics: the 3D and 2D Navier–Stokes systems with rapidly oscillating external forces, reaction-diffusion systems, the complex Ginzburg–Landau equation, the generalized Chafee–Infante equation, and dissipative hyperbolic equations with rapidly oscillating terms and coefficients.
@article{SM_2001_192_1_a1,
     author = {M. I. Vishik and V. V. Chepyzhov},
     title = {Averaging of trajectory attractors of~evolution equations with rapidly oscillating terms},
     journal = {Sbornik. Mathematics},
     pages = {11--47},
     year = {2001},
     volume = {192},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a1/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - V. V. Chepyzhov
TI  - Averaging of trajectory attractors of evolution equations with rapidly oscillating terms
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 11
EP  - 47
VL  - 192
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_1_a1/
LA  - en
ID  - SM_2001_192_1_a1
ER  - 
%0 Journal Article
%A M. I. Vishik
%A V. V. Chepyzhov
%T Averaging of trajectory attractors of evolution equations with rapidly oscillating terms
%J Sbornik. Mathematics
%D 2001
%P 11-47
%V 192
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2001_192_1_a1/
%G en
%F SM_2001_192_1_a1
M. I. Vishik; V. V. Chepyzhov. Averaging of trajectory attractors of evolution equations with rapidly oscillating terms. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 11-47. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a1/

[1] Hale J. K., Verduyn Lunel S. M., “Averaging in infinite dimensions”, J. Integral Equations Appl., 2:4 (1990), 463–494 | DOI | MR | Zbl

[2] Ilin A. A., “Usrednenie dissipativnykh dinamicheskikh sistem s bystro ostsilliruyuschimi pravymi chastyami”, Matem. sb., 187:5 (1996), 15–58 | MR | Zbl

[3] Ilyin A. A., “Global averaging of dissipative dymanical systems”, Rend. Accad. Naz. Sci. XL Mem. Mat. Applicazioni 116, 22:1 (1998), 165–191 | MR

[4] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[5] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[6] Chepyzhov V. V., Vishik M. I., “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | MR | Zbl

[7] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[8] Temam R., “Infinite-dimensional dynamical systems in mechanics and physics”, Applied Math. Sci., 68, Springer-Verlag, New York, 1988 | MR | Zbl

[9] Hale J. K., Asymptotic behaviour of dissipative systems, Math. Surveys Monographs, 25, Amer. Math. Soc., Providence, RI, 1988 | MR

[10] Chepyzhov V. V., Vishik M. I., “Attractors of non-autonomous dynamical systems and their dimension”, J. Math. Pures Appl. (9), 73:3 (1994), 279–333 | MR | Zbl

[11] Chepyzhov V. V., Vishik M. I., “Attractors of non-autonomous evolution equations with translation-compact symbols”, Oper. Theory Adv. Appl., 78 (1995), 49–60 | MR | Zbl

[12] Chepyzhov V. V., Vishik M. I., “Non-autonomous evolutionary equations with translation-compact symbols and their attractors”, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 153–158 | MR | Zbl

[13] Lions J.-L., Quelques méthodes de résolutions des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969 | MR | Zbl

[14] Chepyzhov V. V., Vishik M. I., “Trajectory attractors for 2D Navier-Stokes systems and some generalizations”, Topol. Methods Nonlinear Anal., 8 (1996), 217–243 | MR | Zbl

[15] Chepyzhov V. V., Vishik M. I., “Trajectory attractors for reaction-diffusion systems”, Topol. Methods Nonlinear Anal., 7:1 (1996), 49–76 | MR | Zbl

[16] Chafee N., Infante E., “A bifurcation problem for a nonlinear parabolic equation”, J. Appl. Anal., 4 (1974), 17–37 | DOI | MR | Zbl

[17] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[18] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[19] Solonnikov V. A., O kraevykh zadachakh dlya lineinykh parabolicheskikh sistem differentsialnykh uravnenii obschego vida, Tr. MIAN, 83, Nauka, M., 1965 | MR

[20] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl