A~formula for the generalized Sato--Levine invariant
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 1-10
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $W$ be the generalized Sato–Levine invariant, that is, the unique Vassiliev invariant of order 3 for two-component links that is equal to zero on double torus links of type $(1,k)$. It is proved that
$$
W=\beta-\frac{k^3-k}6\,,
$$
where $\beta$ is the invariant of order 3 proposed by Viro and Polyak in the form of representations of Gauss diagrams and $k$ is the linking number.
			
            
            
            
          
        
      @article{SM_2001_192_1_a0,
     author = {P. M. Akhmet'ev and I. Maleshich and D. Repov\v{s}},
     title = {A~formula for the generalized {Sato--Levine} invariant},
     journal = {Sbornik. Mathematics},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {192},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a0/}
}
                      
                      
                    P. M. Akhmet'ev; I. Maleshich; D. Repovš. A~formula for the generalized Sato--Levine invariant. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a0/
