@article{SM_2001_192_1_a0,
author = {P. M. Akhmet'ev and I. Maleshich and D. Repov\v{s}},
title = {A~formula for the generalized {Sato{\textendash}Levine} invariant},
journal = {Sbornik. Mathematics},
pages = {1--10},
year = {2001},
volume = {192},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a0/}
}
P. M. Akhmet'ev; I. Maleshich; D. Repovš. A formula for the generalized Sato–Levine invariant. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a0/
[1] Kirk P., Livingston C., “Vassiliev invariants of two component links and the Casson–Walker invariant”, Topology, 36 (1997), 1333–1353 | DOI | MR | Zbl
[2] Akhmetiev P. M., “On a higher analog of the linking number of two curves”, Amer. Math. Soc. Transl. Ser. 2, 185 (1998), 113–127 | MR | Zbl
[3] Akhmetev P. M., Repovsh D., “Obobschenie invarianta Sato–Levina”, Tr. MIAN, 221, Nauka, M., 1998, 69–80 | MR | Zbl
[4] Sato N., “Cobordism of semi-boundary links”, Topology Appl., 18 (1984), 225–231 | DOI | MR
[5] Polyak M., Viro O., “Gauss diagram formulas for Vassiliev invariants”, Internat. Math. Res. Notices, 11 (1994), 445–453 | DOI | MR | Zbl
[6] Arnold V. I., Izbrannoe-60, Fazis, M., 1997 | MR
[7] Akhmet'ev P. M., Ruzmaikin A., “A fourth-order topological invariant of magnetic or vortex lines”, J. Geom. Phys., 15 (1994), 1–7 | DOI | MR
[8] Murakami H., Nakanishi Y., “On a certain move generating link-homology”, Math. Ann., 284 (1989), 75–89 | DOI | MR | Zbl
[9] Matveev S. V., “Obobschennye perestroiki trekhmernykh mnogoobrazii i predstavleniya gomologicheskikh sfer”, Matem. zametki, 42:2 (1987), 268–278 | MR