A formula for the generalized Sato–Levine invariant
Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 1-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $W$ be the generalized Sato–Levine invariant, that is, the unique Vassiliev invariant of order 3 for two-component links that is equal to zero on double torus links of type $(1,k)$. It is proved that $$ W=\beta-\frac{k^3-k}6\,, $$ where $\beta$ is the invariant of order 3 proposed by Viro and Polyak in the form of representations of Gauss diagrams and $k$ is the linking number.
@article{SM_2001_192_1_a0,
     author = {P. M. Akhmet'ev and I. Maleshich and D. Repov\v{s}},
     title = {A~formula for the generalized {Sato{\textendash}Levine} invariant},
     journal = {Sbornik. Mathematics},
     pages = {1--10},
     year = {2001},
     volume = {192},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a0/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - I. Maleshich
AU  - D. Repovš
TI  - A formula for the generalized Sato–Levine invariant
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1
EP  - 10
VL  - 192
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_1_a0/
LA  - en
ID  - SM_2001_192_1_a0
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A I. Maleshich
%A D. Repovš
%T A formula for the generalized Sato–Levine invariant
%J Sbornik. Mathematics
%D 2001
%P 1-10
%V 192
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2001_192_1_a0/
%G en
%F SM_2001_192_1_a0
P. M. Akhmet'ev; I. Maleshich; D. Repovš. A formula for the generalized Sato–Levine invariant. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a0/

[1] Kirk P., Livingston C., “Vassiliev invariants of two component links and the Casson–Walker invariant”, Topology, 36 (1997), 1333–1353 | DOI | MR | Zbl

[2] Akhmetiev P. M., “On a higher analog of the linking number of two curves”, Amer. Math. Soc. Transl. Ser. 2, 185 (1998), 113–127 | MR | Zbl

[3] Akhmetev P. M., Repovsh D., “Obobschenie invarianta Sato–Levina”, Tr. MIAN, 221, Nauka, M., 1998, 69–80 | MR | Zbl

[4] Sato N., “Cobordism of semi-boundary links”, Topology Appl., 18 (1984), 225–231 | DOI | MR

[5] Polyak M., Viro O., “Gauss diagram formulas for Vassiliev invariants”, Internat. Math. Res. Notices, 11 (1994), 445–453 | DOI | MR | Zbl

[6] Arnold V. I., Izbrannoe-60, Fazis, M., 1997 | MR

[7] Akhmet'ev P. M., Ruzmaikin A., “A fourth-order topological invariant of magnetic or vortex lines”, J. Geom. Phys., 15 (1994), 1–7 | DOI | MR

[8] Murakami H., Nakanishi Y., “On a certain move generating link-homology”, Math. Ann., 284 (1989), 75–89 | DOI | MR | Zbl

[9] Matveev S. V., “Obobschennye perestroiki trekhmernykh mnogoobrazii i predstavleniya gomologicheskikh sfer”, Matem. zametki, 42:2 (1987), 268–278 | MR