A~formula for the generalized Sato--Levine invariant
Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 1-10

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $W$ be the generalized Sato–Levine invariant, that is, the unique Vassiliev invariant of order 3 for two-component links that is equal to zero on double torus links of type $(1,k)$. It is proved that $$ W=\beta-\frac{k^3-k}6\,, $$ where $\beta$ is the invariant of order 3 proposed by Viro and Polyak in the form of representations of Gauss diagrams and $k$ is the linking number.
@article{SM_2001_192_1_a0,
     author = {P. M. Akhmet'ev and I. Maleshich and D. Repov\v{s}},
     title = {A~formula for the generalized {Sato--Levine} invariant},
     journal = {Sbornik. Mathematics},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {192},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a0/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - I. Maleshich
AU  - D. Repovš
TI  - A~formula for the generalized Sato--Levine invariant
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1
EP  - 10
VL  - 192
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_1_a0/
LA  - en
ID  - SM_2001_192_1_a0
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A I. Maleshich
%A D. Repovš
%T A~formula for the generalized Sato--Levine invariant
%J Sbornik. Mathematics
%D 2001
%P 1-10
%V 192
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_1_a0/
%G en
%F SM_2001_192_1_a0
P. M. Akhmet'ev; I. Maleshich; D. Repovš. A~formula for the generalized Sato--Levine invariant. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a0/