Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 12, pp. 1829-1876
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $A$ be a linear operator with domain $\mathfrak D(A)$ in a complex Banach space $X$. An element $g\in\mathfrak D_\infty(A):=\bigcap_{j=0}^\infty\mathfrak D(A^j)$ is called a vector of degree at most $\xi$ $(>0)$ relative to $A$ if $\|A^jg\|\leqslant c(g)\xi^j$, $j=0,1,\dots$ . The set of vectors of degree at most $\xi$ is denoted by $\mathfrak G_\xi(A)$ and the least deviation of an element $f$ of $X$ from the set $\mathfrak G_\xi(A)$ is denoted by $E_\xi(f,A)$. For a fixed sequence of positive numbers $\{\psi_j\}_{j=1}^\infty$ consider a function $\gamma(\xi):=\min_{j=1,2,\dots}(\xi\psi_j)^{1/j}$. Conditions for the sequence $\{\psi_j\}_{j=1}^\infty$ and the operator $A$ are found that ensure the equality
$$
\limsup_{j\to\infty}\biggl(\frac{\|A^jf\|}{\psi_j}\biggr)^{1/j}=\limsup_{\xi\to\infty}\frac\xi{\gamma(E_\xi(f,A)^{-1})}\,.
$$
for $f\in\mathfrak D_\infty(A)$. If the quantity on the left-hand side of this formula is finite, then $f$ belongs to the Hadamard class determined by the operator $A$ and the sequence $\{\psi_j\}_{j=1}^\infty$. One consequence of the above formula is an expression in terms of $E_\xi(f,A)$ for the radius of holomorphy of the vector-valued function $F(zA)f$, where $f\in\mathfrak D_\infty(A)$, and $F(z):=\sum_{j=1}^\infty z^j/\psi_j$ is an entire function.
			
            
            
            
          
        
      @article{SM_2001_192_12_a3,
     author = {G. V. Radzievskii},
     title = {Characterization of {Hadamard} vector classes in terms of least deviations of their elements from vectors of finite degree},
     journal = {Sbornik. Mathematics},
     pages = {1829--1876},
     publisher = {mathdoc},
     volume = {192},
     number = {12},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_12_a3/}
}
                      
                      
                    TY - JOUR AU - G. V. Radzievskii TI - Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree JO - Sbornik. Mathematics PY - 2001 SP - 1829 EP - 1876 VL - 192 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_12_a3/ LA - en ID - SM_2001_192_12_a3 ER -
%0 Journal Article %A G. V. Radzievskii %T Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree %J Sbornik. Mathematics %D 2001 %P 1829-1876 %V 192 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2001_192_12_a3/ %G en %F SM_2001_192_12_a3
G. V. Radzievskii. Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree. Sbornik. Mathematics, Tome 192 (2001) no. 12, pp. 1829-1876. http://geodesic.mathdoc.fr/item/SM_2001_192_12_a3/
