Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree
Sbornik. Mathematics, Tome 192 (2001) no. 12, pp. 1829-1876

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a linear operator with domain $\mathfrak D(A)$ in a complex Banach space $X$. An element $g\in\mathfrak D_\infty(A):=\bigcap_{j=0}^\infty\mathfrak D(A^j)$ is called a vector of degree at most $\xi$ $(>0)$ relative to $A$ if $\|A^jg\|\leqslant c(g)\xi^j$, $j=0,1,\dots$ . The set of vectors of degree at most $\xi$ is denoted by $\mathfrak G_\xi(A)$ and the least deviation of an element $f$ of $X$ from the set $\mathfrak G_\xi(A)$ is denoted by $E_\xi(f,A)$. For a fixed sequence of positive numbers $\{\psi_j\}_{j=1}^\infty$ consider a function $\gamma(\xi):=\min_{j=1,2,\dots}(\xi\psi_j)^{1/j}$. Conditions for the sequence $\{\psi_j\}_{j=1}^\infty$ and the operator $A$ are found that ensure the equality $$ \limsup_{j\to\infty}\biggl(\frac{\|A^jf\|}{\psi_j}\biggr)^{1/j}=\limsup_{\xi\to\infty}\frac\xi{\gamma(E_\xi(f,A)^{-1})}\,. $$ for $f\in\mathfrak D_\infty(A)$. If the quantity on the left-hand side of this formula is finite, then $f$ belongs to the Hadamard class determined by the operator $A$ and the sequence $\{\psi_j\}_{j=1}^\infty$. One consequence of the above formula is an expression in terms of $E_\xi(f,A)$ for the radius of holomorphy of the vector-valued function $F(zA)f$, where $f\in\mathfrak D_\infty(A)$, and $F(z):=\sum_{j=1}^\infty z^j/\psi_j$ is an entire function.
@article{SM_2001_192_12_a3,
     author = {G. V. Radzievskii},
     title = {Characterization of {Hadamard} vector classes in terms of least deviations of their elements from vectors of finite degree},
     journal = {Sbornik. Mathematics},
     pages = {1829--1876},
     publisher = {mathdoc},
     volume = {192},
     number = {12},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_12_a3/}
}
TY  - JOUR
AU  - G. V. Radzievskii
TI  - Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1829
EP  - 1876
VL  - 192
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_12_a3/
LA  - en
ID  - SM_2001_192_12_a3
ER  - 
%0 Journal Article
%A G. V. Radzievskii
%T Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree
%J Sbornik. Mathematics
%D 2001
%P 1829-1876
%V 192
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_12_a3/
%G en
%F SM_2001_192_12_a3
G. V. Radzievskii. Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree. Sbornik. Mathematics, Tome 192 (2001) no. 12, pp. 1829-1876. http://geodesic.mathdoc.fr/item/SM_2001_192_12_a3/