Solutions of exterior boundary-value problems for the~elasticity system in weighted spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 12, pp. 1763-1798
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The properties of generalized solutions of the exterior Dirichlet and Neumann boundary-value problems are studied for the stationary linear system of elasticity theory in unbounded domains under the assumption that generalized solutions of these problems have finite energy integrals with weight $|x|^a$. Depending on the value of the parameter $a$ uniqueness results are established and explicit formulae for the dimension of the space of solutions of the exterior boundary-value problems are obtained.
			
            
            
            
          
        
      @article{SM_2001_192_12_a1,
     author = {H. Matevossian},
     title = {Solutions of exterior boundary-value problems for the~elasticity system in weighted spaces},
     journal = {Sbornik. Mathematics},
     pages = {1763--1798},
     publisher = {mathdoc},
     volume = {192},
     number = {12},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_12_a1/}
}
                      
                      
                    TY - JOUR AU - H. Matevossian TI - Solutions of exterior boundary-value problems for the~elasticity system in weighted spaces JO - Sbornik. Mathematics PY - 2001 SP - 1763 EP - 1798 VL - 192 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_12_a1/ LA - en ID - SM_2001_192_12_a1 ER -
H. Matevossian. Solutions of exterior boundary-value problems for the~elasticity system in weighted spaces. Sbornik. Mathematics, Tome 192 (2001) no. 12, pp. 1763-1798. http://geodesic.mathdoc.fr/item/SM_2001_192_12_a1/
