A~necessary condition for the uniform minimality of a~system of exponentials in~$L^p$ spaces on the line
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1721-1740
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A necessary condition for the uniform minimality of a system of weighted exponentials
$$
\exp(-i\lambda_nt-a|t|^\alpha), \qquad a>0, \quad \alpha >1,
$$
is obtained in the spaces $L^p$ $(1\leqslant p\infty)$ and $C_0$ on the real line and the half-line. This condition is stated in terms of the indicator of the entire function of order $\beta=\alpha/(\alpha-1)$ with zero set coinciding with the sequence $\lambda_n$. This condition is used to show that there are no bases among the known complete minimal systems of this form in the above-indicated spaces.
			
            
            
            
          
        
      @article{SM_2001_192_11_a6,
     author = {A. M. Sedletskii},
     title = {A~necessary condition for the uniform minimality of a~system of exponentials in~$L^p$ spaces on the line},
     journal = {Sbornik. Mathematics},
     pages = {1721--1740},
     publisher = {mathdoc},
     volume = {192},
     number = {11},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a6/}
}
                      
                      
                    TY - JOUR AU - A. M. Sedletskii TI - A~necessary condition for the uniform minimality of a~system of exponentials in~$L^p$ spaces on the line JO - Sbornik. Mathematics PY - 2001 SP - 1721 EP - 1740 VL - 192 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_11_a6/ LA - en ID - SM_2001_192_11_a6 ER -
A. M. Sedletskii. A~necessary condition for the uniform minimality of a~system of exponentials in~$L^p$ spaces on the line. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1721-1740. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a6/
