A necessary condition for the uniform minimality of a system of exponentials in $L^p$ spaces on the line
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1721-1740 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A necessary condition for the uniform minimality of a system of weighted exponentials $$ \exp(-i\lambda_nt-a|t|^\alpha), \qquad a>0, \quad \alpha >1, $$ is obtained in the spaces $L^p$ $(1\leqslant p<\infty)$ and $C_0$ on the real line and the half-line. This condition is stated in terms of the indicator of the entire function of order $\beta=\alpha/(\alpha-1)$ with zero set coinciding with the sequence $\lambda_n$. This condition is used to show that there are no bases among the known complete minimal systems of this form in the above-indicated spaces.
@article{SM_2001_192_11_a6,
     author = {A. M. Sedletskii},
     title = {A~necessary condition for the uniform minimality of a~system of exponentials in~$L^p$ spaces on the line},
     journal = {Sbornik. Mathematics},
     pages = {1721--1740},
     year = {2001},
     volume = {192},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a6/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - A necessary condition for the uniform minimality of a system of exponentials in $L^p$ spaces on the line
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1721
EP  - 1740
VL  - 192
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_11_a6/
LA  - en
ID  - SM_2001_192_11_a6
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T A necessary condition for the uniform minimality of a system of exponentials in $L^p$ spaces on the line
%J Sbornik. Mathematics
%D 2001
%P 1721-1740
%V 192
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2001_192_11_a6/
%G en
%F SM_2001_192_11_a6
A. M. Sedletskii. A necessary condition for the uniform minimality of a system of exponentials in $L^p$ spaces on the line. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1721-1740. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a6/

[1] Viner N., Integral Fure i nekotorye ego prilozheniya, Fizmatgiz, M., 1963

[2] Sedletskii A. M., “Approksimatsiya sdvigami funktsii na pryamoi”, Teoriya priblizheniya funktsii, Trudy Mezhdunar. konf. priblizh. funktsii (Kiev, 31 maya – 5 iyunya 1983 g.), M., 1987, 397–400

[3] Zalik R., “On approximation by shifts and a theorem of Wiener”, Trans. Amer. Math. Soc., 243 (1978), 299–308 | DOI | MR | Zbl

[4] Zalik R., “On some gap theorems and the closure of translates”, Notices Amer. Math. Soc., 25:2 (1978), A-314

[5] Faxen B., “On approximation by translates and related problems in function theory”, Ark. Mat., 19:2 (1981), 271–289 | DOI | MR | Zbl

[6] Sedletskii A. M., “Approksimatsiya sdvigami i polnota vzveshennykh sistem eksponent v $L^2(\mathbb R)$”, Matem. sb., 123:1 (1984), 92–107 | MR

[7] Zalik R., Saad A. T., “Some theorems concerning holomorphic Fourier transforms”, J. Math. Anal. Appl., 126 (1987), 483–493 | DOI | MR | Zbl

[8] Salnikova T. A., “Polnye i minimalnye sistemy eksponent v prostranstvakh $L^2(\mathbb R)$”, Matem. zametki, 55:3 (1994), 118–129 | MR | Zbl

[9] Salnikova T. A., Polnye i minimalnye sistemy eksponent v lebegovykh prostranstvakh na veschestvennoi osi, Diss. $\dots$ kand. fiz.-matem. nauk, RUDN, M., 1995

[10] Sedletskii A. M., “Approksimativnye svoistva sistem eksponent na pryamoi i polupryamoi”, Matem. sb., 189:3 (1998), 125–140 | MR | Zbl

[11] Sedletskii A. M., “Approksimatsiya posredstvom eksponent na pryamoi i na polupryamoi”, Anal. Math., 27 (2001) | MR

[12] Funktsionalnyi analiz, ed. Krein S. G., Nauka, M., 1972 | MR | Zbl

[13] Sedletskii A. M., “Approksimativnye svoistva sistem eksponent v $L^p(a,b)$”, Differents. uravneniya, 31:5 (1995), 1675–1681 | MR

[14] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[15] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[16] Sedletskii A. M., “Preobrazovaniya Fure bystro ubyvayuschikh funktsii”, Izv. RAN. Ser. matem., 61:3 (1997), 187–202 | MR

[17] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[18] Sedletskii A. M., Fourier transforms and approximations, Gordon and Breach, Amsterdam, 2000 | MR | Zbl

[19] Sedletskii A. M., “Asimptoticheskie formuly dlya nulei funktsii tipa Mittag-Lefflera”, Anal. Math., 20 (1994), 117–132 | DOI | MR

[20] Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978 | MR