A~necessary condition for the uniform minimality of a~system of exponentials in~$L^p$ spaces on the line
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1721-1740

Voir la notice de l'article provenant de la source Math-Net.Ru

A necessary condition for the uniform minimality of a system of weighted exponentials $$ \exp(-i\lambda_nt-a|t|^\alpha), \qquad a>0, \quad \alpha >1, $$ is obtained in the spaces $L^p$ $(1\leqslant p\infty)$ and $C_0$ on the real line and the half-line. This condition is stated in terms of the indicator of the entire function of order $\beta=\alpha/(\alpha-1)$ with zero set coinciding with the sequence $\lambda_n$. This condition is used to show that there are no bases among the known complete minimal systems of this form in the above-indicated spaces.
@article{SM_2001_192_11_a6,
     author = {A. M. Sedletskii},
     title = {A~necessary condition for the uniform minimality of a~system of exponentials in~$L^p$ spaces on the line},
     journal = {Sbornik. Mathematics},
     pages = {1721--1740},
     publisher = {mathdoc},
     volume = {192},
     number = {11},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a6/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - A~necessary condition for the uniform minimality of a~system of exponentials in~$L^p$ spaces on the line
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1721
EP  - 1740
VL  - 192
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_11_a6/
LA  - en
ID  - SM_2001_192_11_a6
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T A~necessary condition for the uniform minimality of a~system of exponentials in~$L^p$ spaces on the line
%J Sbornik. Mathematics
%D 2001
%P 1721-1740
%V 192
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_11_a6/
%G en
%F SM_2001_192_11_a6
A. M. Sedletskii. A~necessary condition for the uniform minimality of a~system of exponentials in~$L^p$ spaces on the line. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1721-1740. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a6/