A method of approximation in $H^p$, $0$
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1705-1719 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A summability method for series, which is called in this paper the generalized Abel–Poisson method, is introduced. For functions in $H^p$, $0, it is shown that the rate of approximation of the boundary function by the generalized Abel–Poisson means is equivalent to the modulus of smoothness of fractional order. All estimates are carried out in the $L_{2\pi}^p$.
@article{SM_2001_192_11_a5,
     author = {S. G. Pribegin},
     title = {A~method of approximation in $H^p$, $0<p\leqslant 1$},
     journal = {Sbornik. Mathematics},
     pages = {1705--1719},
     year = {2001},
     volume = {192},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a5/}
}
TY  - JOUR
AU  - S. G. Pribegin
TI  - A method of approximation in $H^p$, $0
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1705
EP  - 1719
VL  - 192
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_11_a5/
LA  - en
ID  - SM_2001_192_11_a5
ER  - 
%0 Journal Article
%A S. G. Pribegin
%T A method of approximation in $H^p$, $0
%J Sbornik. Mathematics
%D 2001
%P 1705-1719
%V 192
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2001_192_11_a5/
%G en
%F SM_2001_192_11_a5
S. G. Pribegin. A method of approximation in $H^p$, $0
                      
                    

[1] Trigub R. M., “Multiplikatory v prostranstve Khardi $H^p(D^m)$ pri $p\in(0,1]$ i approksimativnye svoistva metodov summirovaniya stepennykh ryadov”, Matem. sb., 188:4 (1997), 145–160 | MR | Zbl

[2] Storozhenko E. A., “Priblizhenie funktsii klassa $H^p$, $0

1$”, Dokl. AN Arm. SSR, 66:3 (1978), 145–149 | MR | Zbl

[3] Storozhenko E. A., “Ob odnoi zadache Khardi–Littlvuda”, Matem. sb., 119 (161):4 (12) (1982), 564–583 | MR | Zbl

[4] Soljanik A. A., “On the order of approximation to function of $H^p(\mathbb R)$ $(0

\le1)$ by certain of Fourier integrals”, Anal. Math., 12:1 (1986), 59–79 | DOI | MR

[5] Pribegin S. G., Otsenka sverkhu i snizu skorosti priblizheniya funktsii klassa $H^p$, $0\nobreak p\le\nobreak 1$, Dep. GNTB Ukr. 29.06.93 No. 1290-Uk93

[6] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[7] Storozhenko E. A., “Priblizhenie funktsii klassa $H^p$, $0

\le1$”, Matem. sb., 105 (147):4 (1978), 601–621 | MR | Zbl

[8] Storozhenko E. A., “O teoremakh tipa Dzheksona v $H^p$, $0

\le1$”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 946–962 | MR | Zbl

[9] Pribegin S. G., “O priblizhenii srednimi Chezaro funktsii iz klassov Khardi”, Izv. vuzov. Ser. matem., 1992, no. 10, 41–46 | MR | Zbl

[10] Storozhenko E. A., Krotov V. G., Osvald P., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L_p$, $0

1$”, Matem. sb., 98 (140):3 (1975), 395–415 | MR | Zbl

[11] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl

[12] Duren P. L., Theory of $H^p$ spaces, Academic Press, New York, 1981 | MR

[13] Tovstolis A. V., Trigub R. M., “Ekvivalentnost raznykh modulei gladkosti v prostranstvakh Khardi”, Teoriya priblizheniya funktsii, Trudy IPMM NAN Ukrainy, 3, 1998, 201–210 | MR | Zbl