A~method of approximation in $H^p$, $0$
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1705-1719

Voir la notice de l'article provenant de la source Math-Net.Ru

A summability method for series, which is called in this paper the generalized Abel–Poisson method, is introduced. For functions in $H^p$, $0$, it is shown that the rate of approximation of the boundary function by the generalized Abel–Poisson means is equivalent to the modulus of smoothness of fractional order. All estimates are carried out in the $L_{2\pi}^p$.
@article{SM_2001_192_11_a5,
     author = {S. G. Pribegin},
     title = {A~method of approximation in $H^p$, $0<p\leqslant 1$},
     journal = {Sbornik. Mathematics},
     pages = {1705--1719},
     publisher = {mathdoc},
     volume = {192},
     number = {11},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a5/}
}
TY  - JOUR
AU  - S. G. Pribegin
TI  - A~method of approximation in $H^p$, $0
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1705
EP  - 1719
VL  - 192
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_11_a5/
LA  - en
ID  - SM_2001_192_11_a5
ER  - 
%0 Journal Article
%A S. G. Pribegin
%T A~method of approximation in $H^p$, $0
%J Sbornik. Mathematics
%D 2001
%P 1705-1719
%V 192
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_11_a5/
%G en
%F SM_2001_192_11_a5
S. G. Pribegin. A~method of approximation in $H^p$, $0