@article{SM_2001_192_11_a4,
author = {I. V. Mykytyuk},
title = {Kahler structures on the tangent bundles of rank-one symmetric spaces},
journal = {Sbornik. Mathematics},
pages = {1677--1704},
year = {2001},
volume = {192},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a4/}
}
I. V. Mykytyuk. Kahler structures on the tangent bundles of rank-one symmetric spaces. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1677-1704. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a4/
[1] Souriau J. M., “Sur la variété de Kepler”, Sympos. Math., 14 (1974), 343–360 | MR | Zbl
[2] Rawnsley J. H., “Coherent states and Kähler manifolds”, Quart. J. Math. Oxford Ser. (2), 28 (1977), 403–415 | DOI | MR | Zbl
[3] Furutani K., Tanaka R., “A Kähler structure on the punctured cotangent bundle of complex and quaternion projective spaces and its applications to geometric quantization, I”, J. Math. Kyoto Univ., 34:4 (1994), 719–737 | MR | Zbl
[4] Ii K., Morikawa T., “Kähler structures on the tangent bundle of Riemannian manifolds of constant positive curvature”, Bull. Yamagata Univ. Natur. Sci., 14:3 (1999), 141–154 | MR | Zbl
[5] Szőke R., “Adapted complex structures and geometric quantization”, Nagoya Math. J., 154 (1999), 171–183 | MR | Zbl
[6] Mykytyuk I. V., “Invariant Kähler structures on the cotangent bundle of compact symmetric spaces”, Nagoya Math. J. (to appear) | MR | Zbl
[7] Gawedzki K., “Fourier-like kernels in geometric quantization”, Dissertationes Math. (Rozprawy Mat.), 128 (1976), 1–80 | MR
[8] Guillemin V., Sternberg S., “Geometric quantization and multiplicities of group representations”, Invent. Math., 67:3 (1982), 515–538 | DOI | MR | Zbl
[9] Guillemin V., Stenzel M., “Grauert tubes and the homogeneous Monge–Ampere equation, II”, J. Differential Geom., 35:3 (1992), 627–641 | MR | Zbl
[10] Mostow G. D., “Some new decomposition theorems for semisimple groups”, Mem. Amer. Math. Soc., 14 (1955), 31–54 | MR | Zbl
[11] Guillemin V., Stenzel M., “Grauert tubes and the homogeneous Monge–Ampere equation”, J. Differential Geom., 34:2 (1991), 561–570 | MR | Zbl
[12] Dancer A., Szőke R., “Symmetric spaces, adapted complex structures and hyperkähler structures”, Quart. J. Math. Oxford Ser. (2), 48:2 (1997), 27–38 | DOI | MR | Zbl
[13] Szőke R., “Adapted complex structures and Riemannian homogeneous spaces”, Ann. Polon. Math., 70 (1998), 215–220 | MR | Zbl
[14] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Academic Press, New York, 1978 | MR | Zbl
[15] Goto M., Grosskhans F., Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl
[16] Onishchik A. L., Topology of transitive transformation groups, Johann Ambrosius Barth, Leipzig, 1994 | MR | Zbl
[17] Postnikov M. M., Lektsii po geometrii. Gruppy i algebry Li, Nauka, M., 1982 | MR
[18] Gotay M., “Constraints, reduction and quantization”, J. Math. Phys., 27:8 (1986), 2051–2066 | DOI | MR | Zbl