Kahler structures on the tangent bundles of rank-one symmetric spaces
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1677-1704

Voir la notice de l'article provenant de la source Math-Net.Ru

For rank-one Riemannian symmetric spaces $G/K$, $\operatorname{dim}G/K\geqslant3$, with semisimple Lie groups $G$ all $G$-invariant Kahler structures $F$ on subdomains of the symplectic manifolds $T(G/K)$ are constructed. It is shown that this class $\{F\}$ of Kahler structures is stable under the reduction procedure. A Lie algebraic method of description of $G$-invariant Kahler structures on the tangent bundles of symmetric spaces $G/K$ is presented. Related questions of the description of the Lie triple system of the space $F_4/\operatorname{Spin}(9)$ in terms of its spinor structure are also discussed.
@article{SM_2001_192_11_a4,
     author = {I. V. Mykytyuk},
     title = {Kahler structures on the tangent bundles of rank-one symmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {1677--1704},
     publisher = {mathdoc},
     volume = {192},
     number = {11},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a4/}
}
TY  - JOUR
AU  - I. V. Mykytyuk
TI  - Kahler structures on the tangent bundles of rank-one symmetric spaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1677
EP  - 1704
VL  - 192
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_11_a4/
LA  - en
ID  - SM_2001_192_11_a4
ER  - 
%0 Journal Article
%A I. V. Mykytyuk
%T Kahler structures on the tangent bundles of rank-one symmetric spaces
%J Sbornik. Mathematics
%D 2001
%P 1677-1704
%V 192
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_11_a4/
%G en
%F SM_2001_192_11_a4
I. V. Mykytyuk. Kahler structures on the tangent bundles of rank-one symmetric spaces. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1677-1704. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a4/