Kahler structures on the tangent bundles of rank-one symmetric spaces
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1677-1704 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For rank-one Riemannian symmetric spaces $G/K$, $\operatorname{dim}G/K\geqslant3$, with semisimple Lie groups $G$ all $G$-invariant Kahler structures $F$ on subdomains of the symplectic manifolds $T(G/K)$ are constructed. It is shown that this class $\{F\}$ of Kahler structures is stable under the reduction procedure. A Lie algebraic method of description of $G$-invariant Kahler structures on the tangent bundles of symmetric spaces $G/K$ is presented. Related questions of the description of the Lie triple system of the space $F_4/\operatorname{Spin}(9)$ in terms of its spinor structure are also discussed.
@article{SM_2001_192_11_a4,
     author = {I. V. Mykytyuk},
     title = {Kahler structures on the tangent bundles of rank-one symmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {1677--1704},
     year = {2001},
     volume = {192},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a4/}
}
TY  - JOUR
AU  - I. V. Mykytyuk
TI  - Kahler structures on the tangent bundles of rank-one symmetric spaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1677
EP  - 1704
VL  - 192
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_11_a4/
LA  - en
ID  - SM_2001_192_11_a4
ER  - 
%0 Journal Article
%A I. V. Mykytyuk
%T Kahler structures on the tangent bundles of rank-one symmetric spaces
%J Sbornik. Mathematics
%D 2001
%P 1677-1704
%V 192
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2001_192_11_a4/
%G en
%F SM_2001_192_11_a4
I. V. Mykytyuk. Kahler structures on the tangent bundles of rank-one symmetric spaces. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1677-1704. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a4/

[1] Souriau J. M., “Sur la variété de Kepler”, Sympos. Math., 14 (1974), 343–360 | MR | Zbl

[2] Rawnsley J. H., “Coherent states and Kähler manifolds”, Quart. J. Math. Oxford Ser. (2), 28 (1977), 403–415 | DOI | MR | Zbl

[3] Furutani K., Tanaka R., “A Kähler structure on the punctured cotangent bundle of complex and quaternion projective spaces and its applications to geometric quantization, I”, J. Math. Kyoto Univ., 34:4 (1994), 719–737 | MR | Zbl

[4] Ii K., Morikawa T., “Kähler structures on the tangent bundle of Riemannian manifolds of constant positive curvature”, Bull. Yamagata Univ. Natur. Sci., 14:3 (1999), 141–154 | MR | Zbl

[5] Szőke R., “Adapted complex structures and geometric quantization”, Nagoya Math. J., 154 (1999), 171–183 | MR | Zbl

[6] Mykytyuk I. V., “Invariant Kähler structures on the cotangent bundle of compact symmetric spaces”, Nagoya Math. J. (to appear) | MR | Zbl

[7] Gawedzki K., “Fourier-like kernels in geometric quantization”, Dissertationes Math. (Rozprawy Mat.), 128 (1976), 1–80 | MR

[8] Guillemin V., Sternberg S., “Geometric quantization and multiplicities of group representations”, Invent. Math., 67:3 (1982), 515–538 | DOI | MR | Zbl

[9] Guillemin V., Stenzel M., “Grauert tubes and the homogeneous Monge–Ampere equation, II”, J. Differential Geom., 35:3 (1992), 627–641 | MR | Zbl

[10] Mostow G. D., “Some new decomposition theorems for semisimple groups”, Mem. Amer. Math. Soc., 14 (1955), 31–54 | MR | Zbl

[11] Guillemin V., Stenzel M., “Grauert tubes and the homogeneous Monge–Ampere equation”, J. Differential Geom., 34:2 (1991), 561–570 | MR | Zbl

[12] Dancer A., Szőke R., “Symmetric spaces, adapted complex structures and hyperkähler structures”, Quart. J. Math. Oxford Ser. (2), 48:2 (1997), 27–38 | DOI | MR | Zbl

[13] Szőke R., “Adapted complex structures and Riemannian homogeneous spaces”, Ann. Polon. Math., 70 (1998), 215–220 | MR | Zbl

[14] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Academic Press, New York, 1978 | MR | Zbl

[15] Goto M., Grosskhans F., Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl

[16] Onishchik A. L., Topology of transitive transformation groups, Johann Ambrosius Barth, Leipzig, 1994 | MR | Zbl

[17] Postnikov M. M., Lektsii po geometrii. Gruppy i algebry Li, Nauka, M., 1982 | MR

[18] Gotay M., “Constraints, reduction and quantization”, J. Math. Phys., 27:8 (1986), 2051–2066 | DOI | MR | Zbl