Kahler structures on the tangent bundles of rank-one symmetric spaces
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1677-1704
Voir la notice de l'article provenant de la source Math-Net.Ru
For rank-one Riemannian symmetric spaces $G/K$, $\operatorname{dim}G/K\geqslant3$,
with semisimple Lie groups $G$ all $G$-invariant Kahler structures $F$ on subdomains of the symplectic manifolds $T(G/K)$ are constructed. It is shown that this class $\{F\}$ of Kahler structures is stable under the reduction procedure. A Lie algebraic method of description of $G$-invariant Kahler structures on the tangent bundles of symmetric spaces $G/K$ is presented.
Related questions of the description of the Lie triple system of the space $F_4/\operatorname{Spin}(9)$ in terms of its spinor structure are also discussed.
@article{SM_2001_192_11_a4,
author = {I. V. Mykytyuk},
title = {Kahler structures on the tangent bundles of rank-one symmetric spaces},
journal = {Sbornik. Mathematics},
pages = {1677--1704},
publisher = {mathdoc},
volume = {192},
number = {11},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a4/}
}
I. V. Mykytyuk. Kahler structures on the tangent bundles of rank-one symmetric spaces. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1677-1704. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a4/