Differential perturbations and $D_\infty$-differential modules
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1639-1659 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper the notions of a $D_\infty$-differential and a $D_\infty$-differential module are introduced, which are, respectively, homotopically invariant analogues of the differential and the chain complex. Basic homotopic properties of $D_\infty$-differentials and $D_\infty$-differential modules are established. The connection between the Gugenheim–Lambe–Stasheff theory of differential perturbations in homological algebra and the construction of a $D_\infty$-differential module is considered.
@article{SM_2001_192_11_a2,
     author = {S. V. Lapin},
     title = {Differential perturbations and $D_\infty$-differential modules},
     journal = {Sbornik. Mathematics},
     pages = {1639--1659},
     year = {2001},
     volume = {192},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a2/}
}
TY  - JOUR
AU  - S. V. Lapin
TI  - Differential perturbations and $D_\infty$-differential modules
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1639
EP  - 1659
VL  - 192
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_11_a2/
LA  - en
ID  - SM_2001_192_11_a2
ER  - 
%0 Journal Article
%A S. V. Lapin
%T Differential perturbations and $D_\infty$-differential modules
%J Sbornik. Mathematics
%D 2001
%P 1639-1659
%V 192
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2001_192_11_a2/
%G en
%F SM_2001_192_11_a2
S. V. Lapin. Differential perturbations and $D_\infty$-differential modules. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1639-1659. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a2/

[1] Stasheff J. D., “Homotopy associativity of $H$-spaces. I; II”, Trans. Amer. Math. Soc., 108:2 (1963), 275–312 | DOI | MR | Zbl

[2] May J. P., The geometry of iterated loop spaces, Lecture Notes in Math., 271, Springer-Verlag, Berlin, 1972 | MR

[3] Smirnov V. A., “O kotsepnom komplekse topologicheskikh prostranstv”, Matem. sb., 115 (157):1 (1981), 146–158 | MR | Zbl

[4] Smirnov V. A., “Kogomologii algebry Stinroda”, Matem. zametki, 52:2 (1992), 120–126 | MR

[5] Smirnov V. A., “Vtorichnye operatsii v gomologiyakh operady $E$”, Izv. RAN. Ser. matem., 56:2 (1992), 449–468 | MR

[6] Smirnov V. A., “Gomologii $B$-konstruktsii i ko-$B$-konstruktsii”, Izv. RAN. Ser. matem., 58:4 (1994), 80–96 | MR | Zbl

[7] Smirnov V. A., “$E_\infty$-struktury na gomotopicheskikh gruppakh”, Matem. zametki, 61:1 (1997), 152–156 | MR | Zbl

[8] Smirnov V. A., “Algebry Li nad operadami i ikh primenenie v teorii gomotopii”, Izv. RAN. Ser. matem., 62:3 (1998), 121–154 | MR | Zbl

[9] Gugenheim V. K. A. M., “On a chain complex of a fibration”, Illinois J. Math., 3 (1972), 398–414 | MR

[10] Gugenheim V. K. A. M., Stasheff J. D., “On perturbations and $A_\infty$-structures”, Bull. Soc. Math. Belg. Sér. A, 38 (1986), 237–246 | MR | Zbl

[11] Lambe L. A., Stasheff J. D., “Applications of perturbation theory to iterated fibrations”, Manuscripta Math., 58 (1987), 363–376 | DOI | MR | Zbl

[12] Gugenheim V. K. A. M., Lambe L. A., “Perturbation theory in differential homological algebra, I”, Illinois J. Math., 33:4 (1989), 566–582 | MR | Zbl

[13] Gugenheim V. K. A. M., Lambe L. A., Stasheff J. D., “Algebraic aspects of Chen's twisting cochain”, Illinois J. Math., 34 (1990), 485–502 | MR | Zbl

[14] Gugenheim V. K. A. M., Lambe L. A., Stasheff J. D., “Perturbation theory in differential homological algebra, II”, Illinois J. Math., 35:3 (1991), 357–373 | MR | Zbl

[15] Huebschmann J., Kadeishvili T., “Small models for chain algebras”, Math. Z., 207 (1991), 245–280 | DOI | MR | Zbl

[16] Berikashvili N. A., “Differentsialy spektralnoi posledovatelnosti”, Trudy Tbilisskogo matem. in-ta im. A. M. Razmadze, 51 (1976) | Zbl